
ATlaT

UNI}(® SYSTEM V
RELEASE 4

Pr(Jgrammer's Guide:
System Services and
Application Packaging Tools

UNIX Software Operation

COpyright 1990,1989,1988,1987,1986,1985,1984,1983 AT&T
All Rights Reserved
Printed In USA

Published by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

No part of this publication may be reproduced or transmitted in any form or by any means-graphic,
electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap­
ing, by any computer or information storage and retrieval systems, etc., without prior permissions in
writing from AT&T.

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all information in this document, AT&T
assumes no liability to any party for any loss or damage caused by errors or omissions or by state­
ments of any kind in this document, its updates, supplements, or special editions, whether such er­
rors are omissions or statements resulting from negligence, accident, or any other cause. AT&T furth­
er assumes no liability arising out of the application or use of any product or system described
herein; nor any liability for incidental or consequential damages arising from the use of this docu­
ment. AT&T disclaims all warranties regarding the information contained herein, whether expressed,
implied or statutory, including implied warranties of merchantability or fitness for a particular purpose.
AT&T makes no representation that the interconnection of products in the manner described herein
will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the
granting or license to make, use or sell equipment constructed in accordance with this description.

AT&T reserves the right to make changes without further notice to any products herein to improve
reliability, function, or design.

TRADEMARKS

OPEN LOOK is a trademark of AT&T.
X Window System is a trademark of the Massachusetts Institute of Technology.

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-947060-3

UNIX
PRESS

A Prentice Hall Title

PRE N T C E HAL L

ORDERING INFORMATION

UNIX® SYSTEM V, RELEASE 4 DOCUMENTATION

To order single copies of UNIX® SYSTEM V, Release 4 documentation,
please call (201) 767-5937.

ATTENTION DOCUMENTATION MANAGERS AND TRAINING DIRECTORS:
For bulk purchases in excess of 30 copies please write to:
Corporate Sales
Prentice Hall
Englewood Cliffs, N.J. 07632.
Or call: (201) 592-2498.

ATTENTION GOVERNMENT CUSTOMERS: For GSA and other pricing
information please call (201) 767-5994.

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

®
AT&T UNIX System V Release 4

General Use and System Administration

UNIX® System V Release 4 Network User's and Administrator's Guide
UNIX® System V Release 4 Product Overview and Master Index
UNIX® System V Release 4 System Administrator's Guide

®
UNIX System V Release 4 System Administrator's Reference Manual
UNIX® System V Release 4 User's Guide
UNIX® System V Release 4 User's Reference Manual

General Programmer's Series

UNIX® System V Release 4 Programmer's Guide: ANSI C
and Programming Support Tools

UNIX® System V Release 4 Programmer's Guide: Character User Interface
(FMLI and ETI)

UNIX® System V Release 4 Programmer's Guide: Networking Interfaces
UNIX® System V Release 4 Programmer's Guide: POSIX Conformance
UNIX® System V Release 4 Programmer's Guide: System Services

and Application Packaging Tools
UNIX® System V Release 4 Programmer's Reference Manual

System Programmer's Series

UNIX® System V Release 4 ANSI C Transition Guide
UNIX® System V Release 4 BSD / XENIX® Compatibility Guide
UNIX® System V Release 4 Device Driver Interface / Driver-Kernel

Interface (DOl / DKI) Reference Manual
UNIX® System V Release 4 Migration Guide
UNIX® System V Release 4 Programmer's Guide: STREAMS

Available from Prentice Hall II

1

2

3

Contents

Preface
Purpose

Introduction to Application Programming
Introduction 1-1
Application Programming 1-2
UNIX System Tools and Where You Can Read About

Them 1-3
Languages Supported in a UNIX System Environment and

Where You Can Read About Them 1-4

Application Programming in the UNIX
System Environment
Introduction 2-1
System Calls 2-2
Developing Application Software 2-19
Package Development and Installation 2-27

File and Record Locking
Intreduction 3-1
~~oo~y ~
File Protection 3-4
Selecting Advisory or Mandatory Locking 3-17

Table of Contents

Table of Contents

4

5

6

7

8

ii

Interprocess Communication
Introduction
Messages
Semaphores
Shared Memory

Process Scheduler
Introduction
Overview of the Process Scheduler
Commands and Function Calls
Interaction with Other Functions
Performance

Symbolic Links
Introduction
Using Symbolic Links

Memory Management
Overview of the Virtual Memory System
Memory Management Interfaces
Address Space Layout

Packaging Application Software
An Overview of Software Packaging
Contents of a Package
The Structural Life Cycle of a Package
The Packaging Tools

4-1
4-3
4-32
4-63

5-1
5-3
5-6
5-28
5-30

6-1
6-3

7-1
7-4
7-15

8-1
8-2
8-5
8-6

System Services and Application Packaging Tools

9

10

Table of Contents

The Installation Tools 8-9
The Package Information Files 8-10
The I nstallation Scripts 8-19
Basic Steps of Packaging 8-34
Assigning a Package Abbreviation 8-36
Defining a Package Instance 8-37
Writing Your Installation Scripts 8-39
Making Package Objects Relocatable 8-40
Placing Objects into Classes 8-42
Defining Package Dependencies 8-43
Writing a Copyright Message 8-44
Reserving Additional Space on the Installation Machine 8-45
Creating the pkginfo File 8-46
Creating the prototype File 8-47
Distributing Packages over Multiple Volumes 8-53
Creating a Package with pkgmk 8-54
Creating a Package with pkgtrans 8-56
Quick Reference to Packaging Procedures 8-58

Modifying the sysadm Interface
Overview of sysadm Modification
Planning Your Interface Modifications
Writing Your Administration Actions
Writing Your Help Messages
Packaging Your Interface Modifications
Deleting Interface Modifications

Data Validation Tools
Introduction to the Tools
Types of Tools
Characteristics of the Tools

9-1
9-6
9-11
9-12
9-21
9-33

10-1
10-2
10-3

Table of Contents iii

Table of Contents _____________________ _

A

B

c

I

iv

liber, A Library System
liber, A Library System

Manual Pages
Manual Pages

Package Installation Case Studies
Introduction
Case #1
Case #2
Case #3
Case #4
Case #5a
Case #5b
Case #5c
Case #6

Index
Index

A-1

8-1

C-1
C-2
C-7
C-13
C-19
C-22
C-26
C-30
C-33

1-1

System Services and Application Packaging Tools

Figures and Tables

Figure 1-1: A Simple ETI Program
Figure 2-1: Basic File 1/0 System Calls
Figure 2-2: Advanced File 1/0 System Calls
Figure 2-3: Terminal 1/0 System Calls
Figure 2-4: Process System Calls
Figure 2-5: Process Status
Figure 2-6: Example of fork
Figure 2-7: Advanced Interprocess Communication System Calls
Figure 2-8: Memory Management System Calls
Figure 2-9: File System Control System Calls
Figure 2-10: Signal System Calls
Figure 2-11: Miscellaneous System Calls
Figure 4-1: ipc..J>E!rm Data Structure
Figure 4-2: Operation Permissions Codes
Figure 4-3: msgget System Call Example
Figure 4-4: msgctl System Call Example
Figure 4-5: msgop System Call Example
Figure 4-6: Operation Permissions Codes
Figure 4-7: sem;et System Call Example
Figure 4-8: sem=tl System Call Example
Figure 4-9: serrop System Call Example
Figure 4-10: Operation Permissions Codes
Figure 4·11: shmget System Call Example
Figure 4-12: shrnc:tl System Call Example
Figure 4-13: shrrop System Call Example
Figure 5-1: The System V Release 4 Process Scheduler
Figure 5-2: Process Priorities (Programmer View)
Figure 5-3: What Gets Returned by PC GETPARMS

Figure 5-4: Process State Transition Diagram
Figure 6-1: File Tree with Symbolic Link
Figure 6-2: Symbolic Links with RFS: Example 1
Figure 6-3: Symbolic Links with RFS: Example 2
Figure 8-1: The Contents of a Package
Figure 8-2: Sample pkginfo File
Figure 8-3: Sample #1 prototype File

Table of Contents

1-10
2-3
2-4
2-5
2-5
2-7
2-9
2-11
2-11
2-12
2-12
2-18
4-6
4-9
4-12
4-18
4-27
4-39
4-42
4-51
4-60
4-68
4-72
4-78
4-85
5-3
5-6
5-21
5-31
6-5
6-13
6-14
8-2
8-11
8-13

v

Table of Contents

Figure 8-4: Sample #2 prototype File
Figure 8-5: Sample conpver File
Figure 8-6: Sample copyright File
Figure 8-7: Sample depend File
Figure 8-8: Sample space File
Figure 8-9: Placing Parameters into the Installation Environment
Figure 8-10: sed Script Format
Figure 8-11: awk Script Format
Figure 9-1: Item Help File for One Form
Figure 9-2: Item Help File for Multiple Forms
Figure 10-1: The Shell Commands
Figure 10-2: The Visual Tools
Figure C-1: Case #1 pkginfo File
Figure C-2: Case #1 prototype File
Figure C-3: Case Study #1 Request Script
Figure C-4: Case #2 prototype File
Figure C-5: Case #2 pkginfo File
Figure C-6: Case #2 Request Script
Figure C-7: Case #2 Postinstall Script
Figure C-8: Case #3 pkginfo File
Figure C-9: Case #3 prototype File
Figure C-10: Case #3 space File
Figure C-11: Case #3 Installation Class Action Script (i.admin)
Figure C-12: Case #3 Removal Class Action Script (r.cfgdata)
Figure C-13: Case #4 pkginfo File
Figure C-14: Case #4 copyright File
Figure C-15: Case #4 c01tpver File
Figure C-16: Case #4 depend File
Figure C-17: Case #5a pkginfo File
Figure C-18: Case #5a prototype File
Figure C-19: Case #5a sed Script (jsbin/inittab)
Figure C-20: Case #5a Postinstall Script
figure C-21: Case #5b pkginfo File
Figure C-22: Case #5b prototype File
Figure C-23: Case #5b Installation Class Action Script (Linittab)
Figure C-24: Case.#5b Removal Class Action Script (r.inittab)
Figure C-25: Case #5b inittab File
Figure C-26: Case #5c pkginfo File
Figure C-27: Case #5c prototype File
Figure C-28: Case #5c build Script (lsbin/init)

8-15
8-15
8-16
8-17
8-18
8-24
8-30
8-31
9-18
9-19
10-6
10-9
C-4
C-4
C-5
C-9
C-10
C-11
C-12
C-15
C-15
C-16
C-17
C-18
C-20
C-20
C-21
C-21
C-23
C-24
C-24
C-25
C-27
C-28
C-28
C-29
C-29
C-31
C-31
C-32

vi System Services and Application Packaging Tools

Figure C-29: Case #3 pkginfo File
Figure C-30: Case #6 prototype File
Figure C-31: Case #6 Installation Class Action Script (Lcron)
Figure C-32: Case #6 Removal Class Action Script (r.cron)
Figure C-33: Case #6 Root crontab File (delivered with package)
Figure C-34: Case #6 Sys crontab File (delivered with package)

Table of Contents

Table of Contents

C-34
C-35
C-35
C-36
C-36
C-37

vII

/

Preface

Purpose
Audience and Prerequisite Knowledge
Organization
The C Connection
Hardware/Software Dependencies
Notation Conventions
Command References
Information In the Examples

Table of Contents

ii
ii
iii
iv
iv

Purpose

This guide is designed to give you information about application programming
in a UNIX system environment. It does not attempt to teach you how to write
programs. Rather, it is intended to supplement texts on programming by con­
centrating on the other elements that are part of getting application programs
into operation.

Audience and Prerequisite Knowledge

As the title suggests, we are addressing application programmers. No special
level of programming involvement is assumed. We hope the book will be use­
ful to people who work on or manage large application development projects.

Programmers in the expert class, or those engaged in developing system
software, may find this guide lacks the depth of information they need. For
them we recommend the Programmer's Reference Manual. .

Krtowledge of terminal use, of a UNIX system editor, and of the UNIX system
directory /file structure is assumed. If you feel shaky about your mastery of
these basic tools, you might want to look over the User's Guide before tackling
this one. .

Organization

This material is organized into ten chapters as follows:

• Chapter 1 - Introduction to Application Programming

Briefly describes what application programming is, UNIX system tools
and where to read about them, and languages supported in the UNIX sys­
tem envirorunent and where to read about them. .

• Chapter 2 - Application Programming in the UNIX System Environment

This chapter introduces the system calls and other system services you can
u~ to develop and package application programs.

• Chapters 3 through 10 - Support Tools and Descriptions

Includes detailed information about the use of many of the UNIX system
tools and system services.

Preface

Purpose

At the end of the text is an appendix showing a sample application that pulls
together a lot of the tools described in the Guide; an appendix of manual pages
unique to System Services and Application Packaging Tools; an appendix of case
studies; and an index.

The C Connection

The UNIX system supports many programming languages, and C compilers are
available on many different operating systems. Nevertheless, the relationship
between the UNIX operating system and C has always been and remains very
close. Most of the code in the UNIX operating system is written in the C
language, and over the years many organizations using the UNIX system have
come to use C for an increasing portion of their application code. Thus, while
this guide is intended to be useful to you no matter what language(s) you are
using, you will find that, unless there is a specific language-dependent point to
be made, the examples assume you are programming in C. The Programmer's
Guide: ANSI C and Programming Support Tools gives you detailed information on
C language programming in the UNIX environment.

Hardware/Software Dependencies

Nearly all the text in this book is accurate for any computer running UNIX Sys­
tem V Release 4.0, with the exception of hardware-specific information such as
addresses.

If you find commands that work a little differently in your UNIX system
environment, it may be because you are running under a different release of the
software. If some commands just don't seem to exist at all, they may be
members of packages not installed on your system. If you do find yourself try­
ing to execute a non-existent command, talk to the administrators of your sys­
tem to find out what you have available.

II System Services and Application Packaging Tools

Purpose

Notation Conventions

Whenever the text includes examples of output from the computer and/or com­
mands entered by you, we follow the standard notation scheme that is common
throughout UNIX system documentation:

• All computer input and output is shown in a constant-width font.
Commands that you type in from your terminal are shown in constant­
width type. Text that is printed on your terminal by the computer is
shown in constant-width type.

• Comments added to a display to show that part of the display has been
omitted are shown in italic type and are indented to separate them from
the text that represents computer output or input. Comments that explain
the input or output are shown in the same type font as the rest of the
display.

An italic font is used to show substitutable text elements, such as the
word "filename. II

• Because you are expected to press the RETURN key after entering a com­
mand or menu choice, the RETURN key is not explicitly shown in these
cases. If, however, during an interactive session, you are expected to press
RETURN without having typed any text, the notation is shown.

• Control characters are shown by the string "C1RL-" followed by the
appropriate character, such as D (this is known as CTRL-D). To enter a
control character, hold down the key marked "CTRL" (or "CON1ROL")
and press the "D" key.

• The standard default prompt signs for an ordinary user and root are the
dollar sign ($) and the pound sign (#).

• When the t prompt is used in an example, the command illustrated may
be executed only by root.

Preface iii

Purpose

Command References

When commands are mentioned in a section of the text for the first time, a
reference to the manual section where the command is formally described is
included in parentheses: conmand(section). The numbered sections are located
in the following manuals:

Sections (1, lC, IG)

Sections (1, 1M), (4), (5), (7), (8)

Sections (1), (2), (3), (4), (5)

User's Reference Manual

System Administrator's Reference Manual

Programmer's Reference Manual

Note that Section 1 is listed for all the manuals. Section 1 of the User's Reference
Manual describes commands appropriate for general users. Section 1 of the
Programmer's Reference Manual describes commands appropriate for program­
mers. Section 1 of the System Administrator's Reference Manual describes com­
mands appropriate for system administrators.

Information in the Examples

While every effort has been made to present displays of information just as they
appear on your terminal, it is possible that your system may produce slightly
different output. Some displays depend on a particular machine configuration
that may differ from yours. Changes between releases of the UNIX system
software may cause small differences in what appears on your terminal.

Where complete code samples are shown, we have tried to make sure they com­
pile and work as represented. Where code fragments are shown, while we can't
say that they have been compiled, we have attempted to maintain the same
standards of coding accuracy for them.

Iv System Services and Application Packaging Tools

1 Introduction to Application
Programming

Introduction 1-1

Application Programming 1-2

UNIX System Tools and Where You Can
Read About Them 1-3
Tools Covered and Not Covered in This Guide 1-3

Languages Supported in a UNIX System
Environment and Where You Can Read
About Them 1-4
The C Language 14
Shell 1-5
awk 1-5
~ 1~
yacc 1-7
m4 1-7
be and de 1-7
curses 1-8
FMU 1~
rn 1~
XWIN Graphical Windowing System 1-11
OPEN LOOK Graphical User Interface 1-11

Table of Contents

Introduction

This chapter introduces application programming in a UNIX system environ­
ment.

It briefly describes what application programming is and then moves on to a
discussion on UNIX system tools and where you can read about them, and to
languages supported in the UNIX system environment and where you can read
about them.

Throughout this chapter and the rest of the Guide, you will find pointers and
references to other guides and manuals where information is described in detail.
In particular, you will find numerous references to the Programmer's Guide: ANSI
C and Programming Support Tools. The Programmer's Guide: ANSI C and Program­
ming Support Tools and the Programmer's Guide: System Services and Application
Packaging Tools are closely connected. Much of the information from both used
to be in the Release 3.2 version of the Programmer's Guide. For Release 4.0 of
UNIX, the information has been divided into two guides.

This guide concentrates on an application programmer's view of how to
develop and package application software under UNIX System V, using the sys­
tem services provided by the kernel.

The Programmer's Guide: ANSI C and Programming Support Tools describes the C
programming environment, libraries, compiler, link editor, and file fonnats. It
also describes the tools provided in the UNIX SystemIC environJIlent for build­
ing, analyzing, debugging, and maintaining programs.

If you are unsure of which book to reference, check the Product Overview and
Master Index. It explains how the document set is prganized and where to find
specific information;

Introduction to Application Programming 1-1

Application Programming

This Guide discusses programming where the objective is to produce programs
(applications) that will run on a UNIX system computer.

Programmers working in this environment are developing applications for the
benefit of other, nonprogramming users. Most large commercial computer
applications involve a team of applications development programmers. They
may be employees of the end-user organization or they may work for a
software development firm. Some of the people working in this environment
may be more in the project management area than working programmers.

Application programming has some of the following characteristics:

1-2

• Applications are often large and are developed by a team of people who
write requirements, designs, tests, and end-user documents. This implies
use of a project management methodology, including version control
(described in the Programmer's Guide: ANSI C and Programming Support
Tools), change requests, tracking, and so on.

• Applications must be developed more robustly.

- They must be easy to use, implying character or graphical user
interfaces.

- They must check all incoming data for validity (for example,
using the data validation tools described in Chapter to).

- They should be able to handle large amounts of data.

• Applications must be easy to install and administer (see Chapter 8, "Pack­
aging Application Software" and Chapter 9, "Modifying the sysadm Inter­
face").

System Services and Application Packaging Tools

UNIX System Tools and Where You Can Read
About Them

Let's clarify the term "UNIX system tools." In the narrowest sense, it means an
existing piece of software used as a component in a new task. In a broader con­
text, the term is often used to refer to elements of the UNIX system that might
also be called features, utilities, programs, filters, commands, languages, func­
tions, and so on. It gets confusing because any of the things that might be
called by one or more of these names can be, and often are, used in the narrow
way as part of the solution to a programming problem.

Tools Covered and Not Covered in This Guide

The Programmer's Guide: System Services and Application Packaging Tools is about
tools used in the process of creating programs in a UNIX system environment,
so let's take a minute to talk about which tools we mean, which ones are not
going to be covered in this book, and where you might find information about
those not covered here. Actually, the subject of things not covered in this guide
might be even more important to you than the things that are. We couldn't
possibly cover everything you ever need to know about UNIX system tools in
this one volume.

Tools not covered in this text:

• the login procedure

• UNIX system editors and how to use them

• how the file system is organized and how you move around in it

• shell programming

Information about these subjects can be found in the User's Guide and a number
of commercially available texts.

Tools that are covered in this text apply to applications. Each application per­
forms a different function, but goes through the same basic steps: input, process­
ing, and output. These tools help you accomplish these steps.

Tools for packaging applications software and customizing the user interface are
also covered in this text.

Introduction to Application Programming 1-3

Languages Supported in a UNIX System
Environment and Where You Can Read About
Them

In this section we describe a variety of languages supported in the UNIX system
environment.

By '1anguages" we mean those offered by AT&T for use on a computer running
a current release of UNIX System V. Since these are separately purchasable
items, not all of them will necessarily be installed on your machine. On the
other hand, you may have languages available on your machine that came from
another source and are not mentioned in this discussion.

The C Language

C is intimately associated with the UNIX system since it was originally
developed for use in recoding the UNIX system kernel. If you need to use a lot
of UNIX system function calls for low-levell/a, memory or device manage­
ment, or interprocess communication, C is a logical first choice. Most programs,
however, don't require such direct interfaces with the operating system, so the
decision to choose C might better be based on one or more of the following
characteristics:

1-4

• a variety of data types: characters, integers of various sizes, and floating
point numbers

• low-level constructs (most of the UNIX system kernel is written in C)

• derived data types such as arrays, functions, pointers, structures, and
unions

• multidimensional arrays

• scaled pointers and the ability to do pointer arithmetic

• bitwise operators

• a variety of flow-of-control statements: if, if-else, switch, while,
do-while, and for

• a high degree of portability

System Services and Application Packaging Tools

UNIX System Languages

A difficulty with C is that it takes a fairly concentrated use of the language over
a period of several months to reach your full potential as a C programmer. If
you are a casual programmer, you might make life easier for yourself if you
choose a less demanding language.

Refer to the Programmer's Guide: ANSI C and Programming Support Tools for com­
plete details on C.

Shell

You can use the shell to create programs (new commands). Such programs are
also called shell procedures. Refer to the User's Guide for information on how
to create and execute shell programs using commands, variables, positional
parameters, return codes, and basic programming control structures.

awk

awk (its name is an acronym constructed from the initials of its developers)
scans an input file for lines that match pattern(s} described in a specification file.
On finding a line that matches a pattern, awk performs actions also described in
the specification. It is not uncommon that an awk program can be written in a
couple of lines to do functions that would take a couple of pages to describe in
a programming language like FORTRAN or C. For example, consider a case
where you have a set of records that consist of a key field and a second field
that represents a quantity, and the task is to output the sum of the quantities for
each key. The pseudocode for such a program might look like this:

Introduction to Application Programming 1·5

UNIX System Languages

An awk program to accomplish this task would look like this:

{ qty[$l] += $2 }
END {for (key in qty) print key, qty[key]

This illustrates only one characteristic of awk; its ability to work with associative
arrays .. With awk, the input file does not have to be sorted, which is a require­
ment of the pseudoprogram.

For detailed information on awk, see the "awk" chapter in the User's Guide and
awk(1) in the User's Reference Manual.

lex

lex is a lexical analyzer that can be added to C or FORlRAN programs. A lex­
ical analyzer is interested in the vocabulary of a language rather than its gram­
mar, which is a system of rules defining the structure of a language. lex can
produce C language subroutines that recognize regular expressions specified by
the user, take some action when a regular expression is recognized, and pass the
output stream on to the next program.

For detailed information on lex, see the "lex" chapter in the Programmer's
Guide: ANSI C and Programming Support Tools and lex(1) in the Programmer's
Reference Manual.

1-6 System Services and Application Packaging Tools

UNIX System Languages

yaee

yaee (Yet Another Compiler Compiler) is a tool for describing an input
language to a computer program. yaee produces a C language subroutine that
parses an input stream according to rules laid down in a specification file. The
yaee specification file establishes a ~t of grammatical rules together with
actions to be taken when tokens in the input match the rules. lex may be used
with yaee to control the input process and pass tokens to the parser that
applies the grammatical rules.

For detailed information on yaee, see the yaee chapter in the Programmer's
Guide: ANSI C and Programming Support Tools and yaee(1) in the Programmer's
Reference Manual.

m4

m4 is a macro processor that can be used as a preprocessor for assembly
language and C programs. For details, see the m4 chapter of the Programmer's
Guide: ANSI C and Programming Support Tools and m4(1) in the Programmer's
Reference Manual.

be and de

be enables you to use a computer terminal as you would a programmable cal­
culator. You can edit a file of mathematical computations and call be to execute
them. The be program uses de. You can use de directly, if you want, but it
takes a little getting used to since it works with reverse Polish notation. That
means you enter numbers into a stack followed by the operator. be and de are
described in Section 1 of the User's Reference Manual.

Introduction to Application Programming 1-7

UNIX System Languages

curses

Actually a library of C functions, curses is included in this list because the set
of functions just about amounts to a sublanguage for dealing with terminal
screens. If you are writing programs that include interactive user screens, you
will want to become familiar with this group of functions.

For detailed information on curses, see the Programmer's Guide: Character User
Interfce (FMLI and ETI)

FMLI

The Form and Menu Language Interpreter (FMLI) is a high-level programming
tool having two main parts:

• The Form and Menu Language, a programming language for writing
scripts that define how an application will be presented to users. The syn­
tax of the Form and Menu Language is very similar to that of the UNIX
system shell programming language, including variable setting and
evaluation, built-in commands and functions, use of and escape from spe­
cial characters, redirection of input and output, conditional statements,
interrupt signal handling, and the ability to set various terminal attributes.
The Form and Menu Language also includes sets of "descriptors," which
are used to define or customize attributes of frames and other objects in
your application .

• The Form and Menu Language Interpreter, fmli, which is a command
interpreter that sets up and controls the video display screen on a termi­
nal, using instructions from your scripts to supplement FMLI's predefined
screen control mechanisms. FMLI scripts can also invoke UNIX system
commands and C executables, either in the background or in full screen
mode. The Form and Menu Language Interpreter operates Similarly to
the UNIX command interpreter sh. At run time it parses the scripts you
have written, thus giving you the advantages of quick prototyping and
easy maintenance.

FMLI provides a framework for developers to write applications and application
interfaces that use menus and forms. It controls many aspects of screen
management for you. That means that you do not have to be concerned with
the low-level details of creating or placing frames, providing users with a means

1-8 System Services and Application Packaging Tools

UNIX System Languages

of navigating between or within frames, or processing the use of forms and
menus. Nor do you need to worry about on which kind of terminal your appli­
cation will be run. FMLI takes care of all that for you.

For details see the FMLI chapter in the Programmer's Guide: Character User Inter­
face (FMU and ETI)

ETI

The Extended Terminal Interface (ETI) is a set of C library routines that promote
the development of application programs displaying and manipulating win­
dows, panels, menus, and forms and that run under the UNIX system.

ETI consists of

• the low-level (curses) library

• the panel library

• the menu library

• the form library

• the TAM Transition library

The routines are C functions and macros; many of them resemble routines in the
standardC library. For example, there's a routine printw that behaves much
like printf and another routine getch that behaves like getc. The automatic
teller program at your bank might use printw to print its menus and getch to
accept your requests for withdrawals (or, better yet, deposits). A visual screen
editor like the UNIX system screen editor vi might also use these and other ETI
routines.

A major feature of ETI is cursor optimization. Cursor optimization minimizes
the amount a cursor has to move around a screen to update it. For example, if
you designed a screen editor program with ETI routines and edited the sentence

ETI is a great package for creating forms and menus.

to read

ETI is the best package for creating forms and menus.

the program would change only "the best" in place of "a great." The
other characters would be preserved. Because the amount of data

Introdu~tlon to Application Programming 1-9

UNIX System Languages

transmitted-the output-is minimized, cursor optimization is also referred to
as output optimization.

Cursor optimization takes care of updating the screen in a manner appropriate
for the terminal on which an ETI program is run. This means that ETI can do
whatever is required to update many different terminal types. It searches the
terminfo database to find the correct description for a terminal.

How does cursor optimization help you and those who use your programs?
First, it saves you time in describing in a program how you want to update
screens. Second, it saves a user's time when the screen is updated. Third, it
reduces the load on your UNIX system's communication lines when the updat­
ing takes place. Fourth, you don't have to worry about the myriad of terminals
on which your program might be run.

Here's a simple ETI program. It uses some of the basic ETI routines to move a
cursor to the middle of a terminal screen and print the character string
BullsEye. For now, just look at their names and you will get an idea of what
each of them does:

Figure 1·1: A Simple ETI Program

For complete information on ETI, refer to the ETI chapter in the Programmer's
Guide: Character User Interface (FMU and ETI).

1-10 System Services and Application Packaging Tools

UNIX System Languages

XWIN Graphical Windowing System

The XWIN Graphical Windowing System is a network-transparent window sys­
tem. X display servers run on computers with either monochrome or color bit­
map display hardware. The server distributes user input to and accepts output
requests from various application programs (referred to as "clients"). Each
client is located on either the same machine or on another machine in the net­
work.

The clients use Xlib, a C library routine, to interface with the window system
by means of a stream connection.

"Widgets" are a set of code and data that provide the look and feel of a user
interface. The C library routines used for creating and managing widgets are
called the X Intrinsics. They are built on top of the X Window System, monitor
events related to user interactions, and dispatch the correct widget code to han­
dle the display. Widgets can then call application-registered routines (called
callbacks) to handle the specific application semantics of an interaction. The X
Intrinsics also monitor application-registered, nongraphical events and dispatch
application routines to handle them. These features allow programmers to use
this implementation of an OPEN LOOK toolkit in data base management, net­
work management, process control, and other applications requiring response to
external events.

Clients sometimes use a higher level library of the X Intrinsics and a set of
widgets in addition to xlib. Refer to the XWIN Graphical Windowing System for
general information about the design of X. The Xlib-C Language Interface is a
reference guide to the low-level C language interface to the XWIN System pro­
tocol.

OPEN LOOK Graphical User Interface

The OPEN LOOK Graphical User Interface is a software application that creates
a user-friendly graphical environment for the UNIX system. It replaces the trad­
itional UNIX system commands with with graphics that include windows,
menus, icons, and other symbols. Using a hand-held pointing device (a
"mouse"), you manipulate windows by moving them, changing their size and
running them in the background. You can have multiple applications running at
the same time by creating more than one window on your screen.

Introduction to Application Programming 1·11

UNIX System Languages

For more information, refer to the OPEN LOOK Graphical User Interface User's
Guide and the OPEN LOOK Graphical User Interface Programmer's Guide/Reference
Manual.

1·12 System Services and Application Packaging Tools

2 Application Programming in the
UNIX System Environment

, .. .

Introduction

System Calls
Error Handling
Basic File 1/0
Advanced File 1/0
Terminal 110
Processes

• Overview of Processes
.exec(2)

• fork(2)
Basic Interprocess Communication
Advanced Interprocess Communication
Memory Management
File System Control
Signals

• Signals Overview
Miscellaneous System Calls

Developing Application Software
File and Record Locking

• Where to Find More Information
I nte rprocess Communications

• Where to Find More Information
Process Scheduler .

• Where to Find More Information
Symbolic Links

• Where. to Find More Information

Table of Contents

2-1

2-2
2-2
2-3
2-4
2-5
2-5
2-6
2-8
2-8
2-10
2-10
2-11
2-12
2-12
2-13
2-18

2-19
2-19
2-20
2-20
2-22
2-22
2-23
2-23
2-24

Table of Contents

Memory Management 2-25
• The Memory Mapping Interface 2-25
• Where to Find More Information 2-26

Data Validation Tools 2-26
• Where t() Find More Information 2-26

Package Development and Installation 2-27
Packaging Application Software 2-27

• Where to Find More Information 2-28
Modifying the sysadr:n Interface 2-28

• Where to Find More Information 2-29

II System Services and Application Packaging Tools

Introduction

This chapter disCusses programming where the objective is to produce programs
(applications) that will run on a UNIX system computer.

The chapter introduces the system calls and other system services you can use
to develop and package application programs.

The first section lists the system calls in functional groups, and includes brief
discussions of error handling, processes, and signals. For details, see Section 2
of the Programmer's Reference Manual.

The ''Developing Application Software" section introduces such topics as file
and record locking, interprocess communication, symbolic links, virtual
memory, the process scheduler, and. data validation.

The "Package Development and Installation" section introduces how to package
applications software and customize the user interface.

The chapter's aim is to give you some .sense of the situations in which you use
these tools, and how the tools fit together;

Application Programming In the UNIX System Environment 2-1

System Calls

UNIX system calls are the interface between the kernel and the user programs
that run on top of it. read, write, and the other system calls in Section 2 of the
Programmer's Reference Manual define what the UNIX system is. Everything else
is built on their foundation. Strictly speaking, they are the only way to access
such facilities as the file system, interprocess communication primitives, and
multitasking mechanisms.

Of course, most programs do not need to invoke system calls directly to gain
access to these facilities. If you are writing a C program, for example, you can
use the library functions described in Section 3 of the Programmer's Reference
Manual. When you use these functions, the details of their implementation on
the UNIX system are transparent to the program, for example, that the system
call read underlies the fread implementation in the standard C library. In
other words, the program will generally be portable to any system, UNIX or
not, with a conforming C implementation. (See Chapter 2 of the Programmer's
Guide: ANSI C and Programming Support Tools for a discussion of the standard C
library.)

In contrast, programs that invoke system calls directly are portable only to other
UNIX or UNIX-like systems; for that reason, you would not use read in a pro­
gram that performed a simple input/output operation. Other operations, how­
ever, including most multitasking mechanisms, do require direct interaction
with the UNIX system kernel. These operations are the subject of the first part
of this book.

A C program is automatically linked with the system calls you have invoked
when you compile the program. The procedure may be different for programs
written in other languages. Check the Programmer's Guide: ANSI C and Program­
ming Support Tools for details on the language you are using.

Error Handling

UNIX system calls that are not able to complete successfully almost always
return a value of -1 to your program. (If you look through the system calls in
Section 2, you will see that there are a few calls for which no return value is
defined, but they are the exceptions.) In addition to the -1 that is returned to
the program, the unsuccessful system call places an integer in an externally

2·2 System Services and Application Packaging Tools

System Calls

declared variable, errno. In a C program, you can determine the value in
errno if your program contains the statement

finclude <errno.h>

The value in errno is not cleared on successful calls, so your program should
check it only if the system call returned a -1. The errors are described in
intro(2) of the Programmer's Reference Manual.

The C language function perror(3C) can be used to print an error message (on
stderr) based on the value of errno.

Basic File 1/0

These system calls perform basic operations on UNIX system files.

Figure 2·1: Basic File 1/0 System Calls

Function Name(s) Purpose

open
close
read
write
creat

unlink
lseek

open a file for reading or writing
close a file descriptor
read from a file
write to a file
create a new file or rewrite an existing
one
remove directory entry
move read/write file pointer

Application Programming In the UNIX System Environment 2·3

System Calls

Advanced File 1/0

These system calls allow creation of new directories (and other things), linking
to existing files, and obtaining or modifying file status information.

Figure 2-2: Advanced File 1/0 System Calls

Function Name{s) Purpose

2-4

link
access
mknod

chm:xi, fchm:xi

chown, lchown, fchown
utime
stat, lstat, fstat
fcntl
ioctl
fpathconf, pathconf
getdents

mkdir

readlink
rename
rrrrlir
symlink

link to a file
determine accessibility of a file
make a directory, a special, or ordinary
file
change mode of file
change owner and group of a file
set file access and modification times
get file status
file control
device control
get configurable path name variables
read directory entries and put in file
system-independent format
make a directory
read the value of a symbolic link
change the name of a file
remove a directory
make a symbolic link to a file

System Services and Application Packaging Tools

System Calls

Terminal I/O

These system calls deal with a general terminal interface that is provided to con­
trol asynchronous communications ports.

Figure 2·3: Terminal I/O System Calls

Function Name(s)

tcgetattr, tcsetattr
tcsencibreak, tcdrain,
tcflush, tcflow
cfgetospeed, cfgetispeed,
cfsetispeed, cfsetospeed
tcgetpgrp, tcsetpgrp

tcgetsid

Processes

Purpose

get and set terminal attributes
line control functions

get and set baud rate functions

get and set terminal foreground pro­
cess group ID
get terminal session ID

These system calls control user processes.

Figure 2·4: Process System Calls

Function Name(s)

fork
exec, execl, execv, execle,
execve, execlp, execvp
exit, exit
wait

setuid, setgid
setpgrp

Purpose

create a new process
execute a file

terminate process
wait for child process to stop or ter­
minate
set user and group IDs
set process group ID

Application Programming in the UNIX System Environment 2·5

System calls

Figure 2-4: Process System calls (continued)

chdir, fchdir
chroot
nice
getcontext, setcontext
qetqroups, setqroups

qetpid, qetpgrp, getppid,
getpgid
qetuid, geteuid, getqid,
geteqid
pause
priocntl
setpgid
set sid
waitid
kill

Overview of Processes

change working directory
change root directory
change priority of a process
get and set current user context
get or set supplementary group access
list IDs
get process, process group, and parent
process IDs
get real user, effective user, real group,
and effect
suspend process until signal
process scheduler control
set process group ID
set session 10
wait for a child process to change state
send a signal to a process or group of
processes

Whenever you execute a command in the UNIX system you are initiating a pro­
cess that is numbered and tracked by the operating system. A flexible feature of
the UNIX system is that processes can be generated by other processes. This
happens more than you might ever be aware of. For example, when you log in
to your system you are running a process, very probably the shell. If you then
use an editor such as vi, take the option of invoking the shell from vi, and exe­
cute the ps command, you will see a display something like that in Figure 2-5
(which shows the results of a ps -f command):

2-6 System Services and Application Packaging Tools

System Calls

Figure 2-5: Process Status

As you can see, user abc (who went through the steps deSCribed above) now
has four processes active. It is an interesting exercise to trace the chain that is
shown in the Process 10 (PID) and Parent Process ID (PPID) columns. The shell
that was started when user abc logged on is process 24210; its parent is the ini­
tialization process (process ID 1). Process 24210 is the parent of process 24631,
and so on.

The four processes in the example above are all UNIX system shell-level com­
mands, but you can spawn new processes from your own program. You might
think, "Well, it's one thing to switch from one program to another when I'm at
my terminal working interactively with the computer; but why would a pro­
gram want to run other programs, and if one does, why wouldn't I just put
everything together into one big executable module?"

Overlooking the case where your program is itself an interactive application
with diverse choices for the user, your program may need to run one or more
other programs based on conditions it encounters in its own processing. (If it's
the end of the month, go do a trial balance, for example.) The usual reasons
why it might not be practical to create one large executable are:

• The load module may get too big to fit in the maximum process size for
your system ..

• You may not have control over the object code of all the other modules
you want to include.

Suffice it to say, there are legitimate reasons why this creation of new processes
might need to be done. There are two ways to do it:

Application Programming In the UNIX System Environment 2-7

System Calls

• exec(2}-stop this process and start another

• fork(2}-start an additional copy of this process

exec(2)

exec is the name of a family of functions that includes exec!, execv, exec!e,
execve, exec!p, and execvp. They all have the function of transforming the
calling process into a new process. The reason for the variety is to provide dif­
ferent ways of pulling together and presenting the arguments of the function.
An example of one version (exec!) might be:

exec! (" /usr/bin/prog2", "prog", progargl, progarg2, (char *) 0) ;

For exec! the argument list is

/usr/bin/prog2 path name of the new process file

prog

progargl,
progarg2

(char *)0

the name the new process gets in its at'/;1V [0]

arguments to prog2 as char *'s

a null char pointer to mark the end of the arguments

Check the exec(2) manual page in the Programmer's Reference Manual for the
rest of the details. The key point of the exec family is that there is no return
from a successful execution: the new process overlays the process that makes
the exec system call. The new process also takes over the Process ID and other
attributes of the old process. If the call to exec is unsuccessful, control is
returned to your program with a return value of -1. You can check errno to
learn why it failed.

fork(2)

The fork system call creates a new process that is an exact copy of the calling
process. The new process is known as the child process; the caller is known as
the parent process. The one major difference between the two processes is that
the child gets its own unique process ID. When the fork process has com­
pleted successfully, it returns a 0 to the child process and the child's process ID
to the parent. If the idea of having two identical processes seems a little funny,
consider this:

2·8 System Services and Application Packaging Tools

System Calls

• Because the return value is different between the child process and the
parent, the program can contain the logic to determine different paths.

• The child process could say, "Okay, I'm the child. I'm supposed to issue
an exec for an entirely different program."

• The parent process could say, "My child is going to be execing a new
process. I'll issue a wait until I get word that that process is finished."

Your code might include statements like this:

Figure 2-6: Example of fork

Application Programming in the UNIX System Environment 2-9

System calls

Because the child process ID is taken over by the new exec'd process, the
parent knows the ID. What this boils down to is a way of leaving one program
to run another, returning to the point in the first program where processing left
off. By the way, this is exactly what the function system in the. standard C
library does.

Keep in mind that the fragment of code above includes a minimum amount of
checking for error conditions. There is also potential confusion about open files
and which program is writing to a file. Leaving out the possibility of named
files, the new process created by the fork or exec has the three standard files
that are automatically opened: stdin, stdout, and stderr. If the parent has
buffered output that should appear before output from the child, the buffers
must be flushed before the fork. Also, if the parent and the child process both
read input from a stream, whatever is read by one process will be lost to the
other. That is, once something has been delivered from the input buffer to a
process the pointer has moved on.

Basic Interprocess Communication

These system calls connect processes so they can communicate. pipe is the sys­
tem call for creating an interprocess channel. dup is the call for duplicating an
open file descriptor. (These IPC mechanisms are not applicable for processes on
separate hosts.)

Advanced Interprocess Communication

These system calls support interprocess messages, semaphores, and shared
memory and are effective in data base management. (These IPC mechanisms
are also not applicable for processes on separate hosts.)

2-10 System Services and Application Packaging Tools

Figure 2-7: Advanced Interprocess Communication System calls

Function Name(s)

msgget
msgctl
msgop
semget
semctl
semop
shmget
shmctl
shmop

Purpose

get message queue
message control operations
message operations
get set of semaphores
semaphore control operations
semaphore operations
get shared memory segment identifier
shared memory control operations
shared memory operations

Memory Management

These system calls give you access to virtual memory facilities.

Figure 2-8: Memory Management System Calls

Function Name(s) Purpose

getpagesize
memcntl
mmap

mprotect
munmap
plock
brk, sbrk

get system page size
memory management control
map pages of memory
set protection of memory mapping
unmap pages of memory
lock process, text, or data in memory
change data segment space allocation

Application Programming In the UNIX System Environment

System Calls

2-11

System Calls

File System Control

These system calls allow you to control various aspects of the file system.

Figure 2-9: File System Control System Calls

Function Name(s)
ustat
sync
mount,unmount
statfs, fstatfs
sysfs

Signals

Purpose
get file system statistics
update super block
mount/unmount a file system
get file system information
get file system type information

Signals are messages passed by the UNIX system to running processes.

Figure 2-10: Signal System Calls

Function Name(s)
sigaction
sigaltstack

signal, sigset, sighold,
sigrelse, sigignore, sigpause
sigpending

sigprocmask
sigsend, sigsendset

sigsuspend

Purpose
detailed signal management
set and/or get signal alternate stack
context
simplified signal management

examine signals that are blocked and
pending
change or examine signal mask
send a signal to a process or group of
processes
install a signal mask and suspend pro­
cess until signal

2-12 System Services and Application Packaging Tools

_________________________ System Calls

Signals Overview
The system defines a set of signals that may be delivered to a process. Signal
delivery resembles the occurrence of a hardware interrupt: the signal is nor­
mally blocked from further occurrence, the current process context is saved, and
a new one is built. A process may specify the handler to which a signal is
delivered, or specify that the signal is to be blocked or ignored. A process may
also specify that a default action is to be taken when signals occur.

Some signals will cause a process to exit when they are not caught. This may
be accompanied by creation of a core image file, containing the current
memory image of the process for use in post-mortem debugging. A process
may choose to have signals delivered on a special stack, so that sophisticated
software stack manipulations are possible.

All signals have the same priority. If multiple signals are pending simultane­
ously, the order in which they are delivered to a process is implementation
specific. Signal routines normally execute with the signal that caused their invo­
cation to be blocked, but other signals may yet occur. Mechanisms are provided
whereby critical sections of code may protect themselves against the occurrence
of specified signals.

Signal Types

The signals defined by the system fall into one of five classes: hardware condi­
tions, software conditions, input/output notification, process control, or resource
control. The set of signals is defined in the file <signal. h>.

Hardware signals are derived from exceptional conditions which may occur
during execution. Such sigrulIs include SIGFPE representing floating point and
other arithmetic exceptions, SIGILL for illegal instruction execution, SIGSEGV
for addresses outside the currently assigned area of memory or for accesses that
violate memory protection constraints and SIGBUS for accesses that result in
hardware related errors. Other, more CPU-specific hardware signals exist, such
as SIGABRT, SIGEMT, and SIGTRAP.

Software signals reflect interrupts generated by user request: SIGINT for the
normal interrupt signal; SIGQUIT for the more powerful quit signal, that nor­
mally causes a core image to be generated; SIGHUP and SIGTERM that cause
gracefUl process termination, either because a user has hung up, or by user or
program request; and SIGKILL, a more powerful termination signal which a
process cannot catch or ignore. Programs may define their own asynchronous

Application Programming In the UNIX System Environment 2-13

System Cells

events using SIGUSRl and SIGUSR2. Other software signals (SIGALRM,
SIGVTALRM, SIGPROF) indicate the expiration of interval timers.

A process can request notification via a SIGPOLL signal when input or output is
possible on a descriptor, or when a non-blocking operation completes. A pro­
cess may request to receive a SIGURG signal when an urgent condition arises.

A process may be stopped by a signal sent to it or the members of its process
group. The SIGSTOP signal is a powerful stop signal, because it cannot be
caught. Other stop signals SIGTSTP, SIGTTIN, and SIGTTOU are used when a
user request, input request, or output request respectively is the reason for stop­
ping the process. A SIGCONT signal is sent to a process when it is continued
from a stopped state. Processes may receive notification with a SIGCHLD signal
when a child process changes state, either by stopping or by terminating.

Exceeding resource limits may cause signals to be generated. SIGXCPU occurs
when a process nears its CPU time limit and SIGXFSZ warns that the limit on
file size creation has been reached.

Signal Handlers
A process has a handler associated with each signal. The handler controls the
way the signal is delivered. The call

2-14

'include <signal.h>

struct sigaction
void
sigset_t
int

} ;

(*sa_handler) () ;
sa_mask;
sa_flags;

sigaction(signo, sa, osa)
int signo;
struct sigaction *sa;
struct sigaction *osa;

System Services and Application Packaging Tools

System Calls

assigns interrupt handler address sa_handler to signal signa. Each handler
address specifies either an interrupt routine for the signal, that the signal is to
be ignored, or that a default action (usually process tennination) is to occur if
the signal occurs. The constants SIG_IGN and SIG_DFL used as values for
sa_handler cause ignoring or defaulting of a condition.

There are two things that must be done to reset a signal handler from within
a signal handler. Resetting the routine that catches the signal [signal (n,
SIG DFL);] is only the first. It's also necessary to unblock the blocked sig­
nal, which is done with sigprocmask.

sa_mask specifies the set of signals to be masked when the handler is invoked;
it implicitly includes the signal which invoked the handler. Five operations are
permitted on signal sets. The set will be emptied by a call to sigemptyset. It
will be filled with every signal currently supported by a call to sigfillset.
Specific signals may be added or deleted with calls to sigaddset and sigdel­
set respectively. Set membership can be tested with sigismember. Signals
sets should always be initialized with a call to sigemptyset or sigfillset.

sa_flags specifies special properties of the signal, such as whether system
calls should be restarted if the signal handler returns, if the signal action should
be reset to SIG_DFL when it is caught, and whether the handler should operate
on the normal run-time stack or a special signal stack (see below).

If osa is nonzero, the previous signal action is returned.

When a signal condition arises for a process, the· signal is added to a set of sig­
nals pending for the process. If the signal is not currently blocked by the pro­
cess then it will be delivered. The process of signal delivery adds the signal to
be delivered and those signals specified in the associated signal handler's
sa_mask to a set of those masked for the process, saves the current process
context, and places the process in the context of the signal handling routine.
The call is arranged so that if the signal handling routine exits normally the sig­
nal mask will be restored and the process will resume execution in the original
context. If the process wishes to resume in a different context, then it must
arrange to restore the signal mask itself.

The mask of blocked signals is independent of handlers for delays. It delays the
delivery of signals much as a raised hardware interrupt priority level delays
hardware interrupts. Preventing an interrupt from occurring by changing the
handler is analogous to disabling a device from further interrupts.

Application Programming In the UNIX System Environment 2-15

System Calls

The signal handling routine sa_handler is called by a C call of the form

(*sa_handler) (signo, infop, ucp);
int signo;
siqinfo_t *infop;
ucontext_t *ucp;

signa gives the number of the signal that occurred. infop is either equal to 0, or
points to a structure that contains information detailing the reasOn why the sig­
nal was generated. This infol'llUition must be explicitly asked for when the
signal's action is specified. The ucp parameter is a pointer to a structure con­
taining the process's context prior to the delivery of the signal, and will be used
to restore the process's context upon return from the signal handler.

Sending Signals

A process can send a signal to another process or group of processes with the
calls:

kill (pid, signo);
int pid, signo;

sigsend(idtype, id, signo);
idtype_t idtype;
id_t id;

Unless the process sending the signal is privileged, its real or effective user 10
must be equal to the receiving process's real or saved user 10.

Signals can also be sent from from a terminal device to the process group or ses­
sion leader associated with the terminal. See termio(7).

Protecting Critical Sections

To block a section of code against one or more signals, a sigprocmask call
may be used to add a set of signals to the existing mask, and return the old
mask:

2-16

sigprocmask(SIG_BLOCK, mask, omask);
sigset_t *mask;
sigset_t *omask;

System Services and Application Packaging Tools

The old mask can then be restored later with sigprocmask,

sigprocmask(SIG_UNBLOCK, mask, omask);
siqset_t *mask;
siqset_t *omask;

System Calls

The sigprocmask call can be used to read the current mask without changing
it by spe<:ifying null pointer as its second argument.

It is possible to check conditions with some signals blocked, and then to pause
waiting for a S\gnal and restoring the mask, by using:

siqsuspend(mask);
siqset_t *mask;

Signal Stacks
Applications that maintain complex or fixed size stacks can use the call

struct siqaltstack {
caddr_t ss_sp;
int ss_size;
int ss_flaqs;

} ;

siqaltstack(ss, oss)
struct siqaltstack *ss;
struct siqaltstack *oss;

to provide the system with a stack based at ss_sp of size ss_size for delivery
of signals. The system automatically adjusts for direction of stack growth.
ss_flaqs indicates whether the process is currently on the signal stack, and
whether the signal stack is disabled.

When a signal is to be delivered and the pr~ess has requested that it be
delivered on the alternate stack (see siqaction above), the system checks
whether the process is on a signal stack. If it is not, then the process is switched
to the signal stack for delivery, with the return from the signal arranged to
restore the previous stack.

If the process wishes to take a nonlocal exit from the signal routine, or run code
from the signal stack that use!! a different stack, a siqaltstack call should be
used to reset the signal stack.

Application Programming In the UNIX System Environment 2-17

System Calls

Miscellaneous System Calls

These are system calls for such things as administration, timing, and other mis­
cellaneous purposes.

Figure 2-11: Miscellaneous System Calls

Function Names(s) Purpose

2-18

ulimit
alarm
getmsg
getrlimit, setrlimit

uname
putmsg
profil
sysconf

uadmin
time
stime
acct
sys3b

get and set user limits
set a process alarm clock
get next message off a stream
control maximum system resource con­
sumption
get! set name of current UNIX system
send a message on a stream
execution time profile
method for application's determination
of value for system configuration
administrative control
get time
set time
enable or disable process accounting
machine-specific functions

System Services and Application Packaging Tools

Developing Application Software

Each application performs a different function, but goes through the same basic
steps: input, processing, and output. This section briefly describes tools you can
use to accomplish these steps. Then it refers you to other chapters in this book
or to other documents for more details.

For the input and output steps, most applications interact with an end user at a
terminal.

During the processing step, sometimes an application needs access to special
services provided by the operating system (for example, to interact with the file
system, control processes, manage memory, and more). Some of these services
are provided through system calls and some through libraries of functions.
(System calls are grouped by function in the previous section of this book.)
Some system call services and libraries for validating data are described in detail
later in this book.

File and Record Locking

The provision for locking files, or portions of files, is primarily used to prevent
the sort of error that can occur when two or more users of a file try to update
information at the same time. The classic example is the airlines reservation
system where two ticket agents each assign a passenger to Seat A, Row 5 on the
5 o'clock flight to Detroit. A locking mechanism is designed to prevent such
mishaps by blocking Agent B from even seeing the seat assignment file until
Agent A's transaction is complete.

File locking and record locking are really the same thing, except that file locking
implies the whole file is affected; record locking means that only a specified por­
tion of the file is locked. (Remember, in the UNIX system, file structure is
undefined; a record is a concept of the programs that use the file.)

Two types of locks are available: read locks and write locks. If a process places
a read lock on a file, other processes can also read the file but all are prevented
from writing to it, that is, changing any of the data. If a process places a write
lock on a file, no other processes can read or write in the file until the lock is
removed. Write locks are also known as exclusive locks. The term shared lock
is sometimes applied to read locks.

Application Programming In the UNIX System Environment 2-19

Developing Application Software

Another distinction needs to be made between mandatory and advisory locking.
Mandatory locking means that the discipline is enforced automatically for the
system calls that read, write, or create files. This is done through a permission
flag established by the file's owner (or the superuser). Advisory locking means
that the processes that use the file take the responsibility for setting and remov­
ing locks as needed. Thus, mandatory may sound like a simpler and better
deal, but it isn't so. The mandatory locking capability is included in the system
to comply with an agreement with /usr/group, an organization that
represents the interests of UNIX system users. The principal weakness in the
mandatory method is that the lock is in place only while the single system call
is being made. It is extremely common for a single transaction to require a
series of reads and writes before it can be considered complete. In cases like
this, the term atomic is used to describe a transaction that must be viewed as an
indivisible unit. The preferred way to manage locking in such a circumstance is
to make certain the lock is in place before any I/O starts, and that it is not
removed until the transaction is done. That calls for locking of the advisory
variety.

Where to Find More Information

There is an example of file and record locking in the sample application in
Appendix A. Chapter 3 in this book is a detailed discussion of the subject with
a number of examples. The manual pages that apply to this facility are
fcntl(2), fcntl(5), lockf(3), and chmod(2) in the Programmer's Reference
Manual. fcntl(2) is the system call for file and record locking (although it isn't
limited to that only) fcntl(5) tells you the file control options. The subroutine
lockf(3) can also be used to lock sections of a file or an entire file. Setting
chmod so that all portions of a file are locked will ensure that parts of files are
not corrupted.

Interprocess Communications

Pipes, named pipes, and signals are all forms of interprocess communication.
Business applications running on a UNIX system computer, however, often need
more sophisticated methods of communication. In applications, for example,
where fast response is critical, a number of processes may be brought up at the
start of a business day to be constantly available to handle transactions on
demand. This cuts out initialization time that can add seconds to the time
required to deal with the transaction. To go back to the ticket reservation

2-20 System Services and Application Packaging Tools

Developing Application Software

example again for a moment, if a customer calls to reserve a seat on the 5
o'clock flight to Detroit, you don't want to have to say, "Yes, sir. Just hang on a
minute while I start up the reservations program." In transaction-driven sys­
tems, the normal mode of processing is to have all the components of the appli­
cation standing by waiting for some sort of an indication that there is work to
do.

To meet requirements of this type, the UNIX system offers a set of nine system
calls and their accompanying header files, all under the umbrella name of inter­
process communications (IPC).

The IPC system calls come in sets of three; one set each for messages, sema­
phores, and shared memory. These three terms define three different styles of
communication between processes:

messages

semaphores

shared memory

Communication is in the form of data stored in a buffer.
The buffer can be either sent or received.

Communication is in the form of positive integers with a
value between 0 and 32,767. Semaphores may be con­
tained in an array the size of which is determined by the
system administrator. The default maximum size for
the array is 25.

Communication takes place through a common area of
main memory. One or more processes can attach a seg­
ment of memory and as a consequence can share what­
ever data is placed there.

The sets of IPC system calls are:

rnsgget
rnsgetl
rnsgop

sernget
sernetl
sernop

shrnget
shrnetl
shrnop

The get calls each return to the calling program an identifier for the type of
IPC facility that is being requested.

The etl calls provide a variety of control operations that include obtaining
(IPC_STAT), setting (IPC_SET) and removing (IPC_RMID), the values in data
structures associated with the identifiers picked up by the get calls.

Application Programming in the UNIX System Environment 2-21

Developing Application Software

The op manual pages describe calls that are used to perform the particular
operations characteristic of the type of !PC facility being used. msgop has calls
that send or receive messages. semop (the only one of the three that is actually
the name of a system call) is used to increment or decrement the value of a
semaphore, among other functions. shmop has calls that attach or detach
shared memory segments.

Where to Find More Information
Chapter 4 in this book gives a detailed description of IPC, with many code
examples that use the !PC system calls. An example of the use of some IPC
features is included in the liber application in Appendix A. The system calls
are described in Section 2 of the Programmer's Reference Manual.

Process Scheduler

The UNIX system scheduler determines when processes run. It maintains pro­
cess priorities based on configuration parameters, process behavior, and user
requests; it uses these priorities to assign processes to the CPU.

Scheduler functions give users absolute control over the order in which certain
processes run and the amount of time each process may use the CPU before
another process gets a chance.

By default, the scheduler uses a time-sharing policy. A time-sharing policy
adjusts process priorities dynamically in an attempt to give good response time
to interactive processes and good throughput to CPU-intensive processes.

The scheduler offers a real-time scheduling policy as well as a time-sharing pol­
icy. Real-time scheduling allows users to set fixed priorities- priOrities that the
system does not change. The highest priority real-time user process always gets
the CPU as soon as it is runnable, even if system processes are runnable. An
application can therefore specify the exact order in which processes run. An
application may also be written so that its real-time processes have a guaranteed
response time from the system.

For most UNIX system environments, the default scheduler configuration works
well and no real-time processes are needed: administrators need not change
configuration parameters and users need not change scheduler properties of
their processes. However, for some applications with strict timing constraints,

2-22 System Services and Application Packaging Tools

Developing Application Software

real-time processes are the only way to guarantee that the application's require­
ments are met.

Where to Find More Information
Chapter 5 in this book gives detailed information on the process scheduler,
along with relevant code examples. See also priocntl(1) in the User's Refer­
ence Manual, priocntl(2) in the Programmer's Reference Manual, and
dispadmin(1M) in the System Administrator's Reference Manual.

SymbOlic Links

A symbolic link is a special type of file that represents another file. The data in
a symbolic link consists of the path name of a file or directory to which the
symbolic link file refers. The link that is formed is called symbolic todistin­
guish it from a regular (also called a hard) link. A symbolic link differs function­
ally from a regular link in three major ways.

• Files from different file systems may be linked.

• Directories, as well as regular files, may be symbolically linked by any
user.

• A symbolic link can be created even if the file it represents does not exist.

When a user creates a regular link to a file, a new directory entry is created con­
taining a new file name and the inode number of an existing file. The link
count of the file is incremented.

In contrast, when a user creates a symbolic link, (using the In(l) command with
the -s option) both a new directory entry and a new inode are created. A data
block is allocated to contain the path name of the file to which the symbolic link
refers. The link count of the referenced file is not incremented.

Symbolic links can be used to solve a variety of common problems. For exam­
ple, it frequently happens that a disk partition (such as root) runs out of disk
space. With symbolic links, an administrator can create a link from a directory
on that file system to a directory on another file system. Such a link provides
extra disk space and is, in most cases, transparent to both users and programs.

Application Programming in the UNIX System Environment 2-23

Developing Application Software

Symbolic links can also help deal with the built-in path names that appear in
the code of many commands. Changing the path names would require chang­
ing the programs and recompiling them. With symbolic links, the path names
can effectively be changed by making the original files symbolic links that point
to new files.

In a shared resource environment like RFS, symbolic links can be very useful.
For example, if it is important to have a single copy of certain administrative
files, symbolic links can be used to help share them. Symbolic links can also be
used to share resources selectively. Suppose a system administrator wants to do
a remote mount of a directory that contains sharable devices. These devices
must be in / devon the client system, but this system has devices of its own so
the administrator does not want to mount the directory onto / dey. Rather than
do this, the administrator can mount the directory at a location other than / dey
and then use symbolic links in the / dey directory to refer to these remote dev­
ices. (This is similar to the problem of built-in path names since it is normally
assumed that devices reside in the / dey directory.)

Finally, symbolic links can be valuable within the context of the virtual file sys­
tem (VFS) architecture. With VFS new services, such as higher performance
files, network IPC, and FACE servers, may be provided on a file system basis.
Symbolic links can be used to link these services to home directories or to places
that make more sense to the application or user. Thus, you might create a data
base index file in a RAM-based file system type and symbolically link it to the
place where the data base server expects it and manages it.

Where to Find More Information

Chapter 6 in this book discusses symbolic links in detail. Refer to symlink (2)
in the Programmer's Reference Manual for information on creating symbolic links.
See also stat(2), renarne(2), link(2), readlink(2), and unlink(2) in the
same manual.

2-24 System Services and Application Packaging Tools

Developing Application Software

Memory Management

'fJ::le UNIX system includes a complete set of memory-mapping mechanisms.
Process address spaces are composed of a vector of memory pages, each of
which can be independentiy mapped and manipulated. The memory­
management facilities

• unify the system's operations on memory

• provide a set of kernel mechanisms powerful and general enough to sup­
port the implementation of fundamental system services without special­
purpose kernel support

• maintain consistency with the existing environment, in particular using
the UNIX file system as the name space for named virtual-memory objects

The system's virtual memory consists of allavailable physical memory resources
including local and remote file systems, processor primary memory, swap space,
and other random-access devices. Named objects in the virtual.memory are
referenced though the UNIX file system. However, not all file system objects
are in the virtual memory; devices that UNIX cannot treat as storage, such as.
terminal and network device files, are not in the virtual memory. Some virtual
memory objects, such as private process memory and shared memory segments,
do not have names.

The Memory Mapping Interface.
The applications programmer gains access to the facilities of the virtual memory
system through several sets of $yst~m calls,

• mmap establishes a mapping between a process's addre5f; space and a vir.,.
tual memory object.

• mprotect assigns access protection to a block of virtual memory

• munmap removes a memory mapping

• getpagesize returns the system~ependent size of a memory page.

• mincore tells whether mapped memory pages are in primary memory

Application Programming In the UNIX System Environment 2-25

Developing Application Software

Where to Find More Information
Chapter 7 in this book gives a detailed description of the virtual memory sys­
tem. Refer to mmap(2), mprotect(2), munmap(2), getpagesize(2), and min­
core(2) in the Programmer's Reference Manual for these manual pages.

Data Validation Tools

Data validation tools are written to help you write any administrative programs
and routines that are part of your software package (this is known as package
administration). They help standardize the appearance of administration
interaction in the UNIX system environment and also simplify development of
scripts and programs requiring administrator input.

There are two types of data validation tools:

• shell commands (to be used in shell scripts)

• visual tools (to be used in FMU form definitions)

The shell commands perform a series of tasks; the visual tools perform a subsec­
tion of the full series. These tasks are:

• prompting a user for input

• validating the answer

• formatting and printing a help message when requested

• formatting and presenting an error message when validation fails

• returning the input if it passes validation

• allowing a user to quit the process

Where to Find More Information
Chapter 10 in this book describes the characteristics of these tools and intro­
duces you to the available tools for all two types. For details on a specific tool,
refer to Appendix B. It contains the manual pages for ckdate(1), ckgid(1),
ckint(1), ckkeywd(1)' ckpath(1), ckrange(1)' ckstr(1)' cktime(1), ckuid(1),
ckyorn(l), dispqid(t), and diSpuid(t). The visual tools are also documented
in the Section 1 manual pages.

2-26 System Services and Application Packaging Tools

Package Development and Installation

This section gives the software package developer information on the interfaces
provided by SVR4, specifically package software for SVR4 and how to modify
the administrator's interface.

The interface modification tools allow you to generate files to deliver as part of
your package. When these files are installed, your package administration tasks
are added to the interface.

Packaging Application Software

Packaging software that will be installed on a computer running UNIX SVR4
differs from packaging in a pre-SVR4 environment. Pre-SVR4 packages deliver
information to the system through script actions, but an SVR4 package does this
through package information files.

A software package is made up of a group of components that together create
the software. These components naturally include the executables that comprise
the software, but they also include at least two information files and can option­
ally include other information files and scripts.

The contents of a package fall into three categories:

• required components

• optional package information files

• optional package scripts

A packaging tool, the pkgmk command, is provided to help automate package
creation. It gathers the components of a package on the de"elopment machine
and copies and formats them onto the installation medium.

The installation tool, the pkgadd command, copies the package from the instal­
lation medium onto a system and performs system housekeeping routines that
concern the package.

Application Programming In the UNIX System Environment 2-27

Package Development and Installation

Where to Find More Information
Chapter 8 in this book gives complete details on packaging application software.
Appendix C contains package installation case studies. For details on a specific
tool, refer to Appendix B. It contains the manual pages for adm1n(4),
compver(4), copyriqht(4), depend(4), installf(lM), pkqadd(lM),
pkqask(lM), pkqchk(1M), pkqinfo(1), pkqinfo(4), pkqmap(4), pkgmk(l),
pkqparam(1), pkqproto(1), pkqrm(lM), pkqtrans(1), prototype(4),
removef(1M), and space(4).

Modifying the sysadm Interface

The UNIX system provides a menu interface to the most common administra­
tive procedures. It is invoked by executing sysadm and is referred to as the
sysadm interface.

You can deliver additions or changes to this interface as part of your application
software package. Creating the necessary information for an interface
modification can be done using the tools UNIX provides.

Two commands can be used to modify the interface. edsysadm allows you to
make changes or additions to the interface. It is interactive (much like the
sysadm command itself) and presents a series of prompts for information.
Which prompts appear depend on your response to them. The delsysadm
command deletes menus or tasks from the interface. In addition to these com­
mands, a group of data validation tools are provided to simplify and standard­
ize the programming of administrative interaction.

When you execute edsysadm to define menus and tasks and save those
definitions to be included in your application software package, it creates the
package description file, the menu information file, and a prototype file.

• The package description file contains information used by edsysadm to
change interface modifications already saved for packaging.

• The menu information file contains the menu or task name, where it is
located in the interface structure and, for tasks, what executable to use
when the task is invoked.

2-28 System Services and Application Packaging Tools

Package Development and Installation

• The prototype file created by edsysadm contains entries for all of the
interface modification components that must be packaged with your
software (for example, the menu information file and, for tasks, the exe­
cutables).

You must take a number of steps if you intend to modify the sysadm interface
by adding the administration to your package. You have to

• plan your package administration

• write your administration actions

• write your help messages

• package your interface modifications

Where to Find More Information
Chapter 9 in this book gives complete details on modifying the sysadm inter­
face. For details on a specific tool, refer to Appendix B. It contains the manual
pages for delsysadm(lM) and edsysadm(1M). The System Administrator's
Guide gives a complete description of the interface and how to use it. See also
the Programmer's Guide: Character User Interface (FMU and ETI) for complete
information on FMLI.

Application Programming In the UNIX System Environment 2-29

3 File and Record Locking

Introduction 3-1

Terminology 3-2

File Protection 3-4
Opening a File for Record Locking 3-4
Setting a File Lock 3-6
Setting and Removing Record Locks 3-9
Getting Lock Information 3-13
Deadlock Handling 3-16

Selecting Advisory or Mandatory Locking 3-17
Caveat Emptor-Mandatory Locking 3-18
Record Locking and Future Releases of the UNIX System 3-18

Table of Contents

Introduction

Mandatory and advisory file and record locking both are available on current
releases of the UNIX system. The intent of this capability to is provide a syn­
chronization mechanism for programs accessing the same stores of data simul­
taneously. Such processing is characteristic of many multiuser applications, and
the need for a standard method of dealing with the problem has been recog­
nized by standards advocates like /usr/group, an organization of UNIX system
users from businesses and campuses across the country.

Advisory file and record locking can be used to coordinate self-synchronizing
processes. In mandatory locking, the standard I/O subroutines and I/O system
calls enforce the locking protocol. In this way, at the cost of a little efficiency,
mandatory locking double checks the programs against accessing the data out of
sequence.

The remainder of this chapter describes how file and record locking capabilities
can be used. Examples are given for the correct use of record locking. Miscon­
ceptions about the amount of protection that record locking affords are
dispelled. Record locking should be viewed as a synchronization mechanism,
not a security mechanism.

The manual pages for the fcntl(2) system call, the lockf(3) library function,
and fcntl(5) data structures and commands are referred to throughout this sec­
tion. You should read them before continuing.

File and Record locking 3·1

Terminology

Before discussing how record locking should be used, let us first define a few
tenns.

Record
A contiguous set of bytes in a file. The UNIX operating system does not
impose any record structure on files. This may be done by the pro­
grams that use the files.

Cooperating Processes
Processes that work together in some well-defined fashion to accomplish
the tasks at hand. Processes that share files must request pennission to
access the files before using them. File access permissions must be care­
fully set to restrict noncooperating processes from accessing those files.
The tenn process will be used interchangeably with cooperating process
to refer to a task obeying such protocols.

Read (Share) Locks
These are used to gain limited access to sections of files. When a read
lock is in place on a record, other processes may also read lock that
record, in whole or in part. No other process, however, may have or
obtain a write lock on an overlapping section of the file. If a process
holds a read lock it may assume that no other process will be writing or
updating that record at the same time. This access method also permits
many processes to read the given record. This might be necessary when
searching a file, without the contention involved if a write or exclusive
lock were to be used.

Write (Exclusive) Locks
These are used to gain complete control over sections of files. When a
write lock is in place on a record, no other process may read or write
lock that record, in whole or in part. If a process holds a write lock it
may assume that no other process will be reading or writing that record
at the same time.

Advisory Locking

3-2

A fonn of record locking that does not interact with the I/O subsystem.
Advisory locking is not enforced, for example, by creat(2), open(2),
read(2), or write(2). The control over records is accomplished by
requiring an appropriate record lock request before I/O operations. If
appropriate requests are always made by all processes accessing the file,
then the accessibility of the file will be controlled by the interaction of
these requests. Advisory locking depends on the individual processes

System Services and Application Packaging Tools

Terminology

to enforce the record locking protocol; it does not require an accessibil­
ity check at the time of each I/O request.

Mandatory Locking
A form of record locking that does interact with the I/O subsystem.
Access to locked records is enforced by the creat, open, read, and
write(2) system calls. If a record is locked, then access of that record
by any other process is restricted according to the type of lock on the
record. The control over records should still be performed explicitly by
requesting an appropriate record lock before I/O operations, but an
additional check is made by the system before each I/O operation to
ensure the record locking protocol is being honored. Mandatory locking
offers an extra synchronization check, but at the cost of some additional
system overhead.

File and Record Locking 3-3

File Protection

There are access permissions for UNIX system files to control who may read,
write, or execute such a file. These access permissions may only be set by the
owner of the file or by the superuser. The permissions of the directory in which
the file resides can also affect the ultimate disposition of a file. Note that if the
directory permissions allow anyone to write in it, then files within the directory
may be removed, even if those files do not have read, write or execute permis­
sion for that user. Any information that is worth protecting, is worth protecting
properly. If your application warrants the use of record locking, make sure that
the permissions on your files and directories are set properly. A record lock,
even a mandatory record lock, will only protect the portions of the files that are
locked. Other parts of these files might be corrupted if proper precautions are
not taken.

Only a known set of programs and/or administrators should be able to read or
write a data base. This can be done easily by setting the set-group-ID bit of the
data base accessing programs; see chmod(1). The files can then be accessed by a
known set of programs that obey the record locking protocol. An example of
such file protection, although record locking is not used, is the mail(1) com­
mand. In that command only the particular user and the mail command can
read and write in the unread mail files.

Opening a File for Record Locking

The first requirement for locking a file or segment of a file is having a valid
open file descriptor. If read locks are to be done, then the file must be opened
with at least read accessibility and likewise for write locks and write accessibil­
ity. For our example we will open our file for both read and write access:

3-4 System Services and Application Packaging Tools

File Protection

The file is now open for us to perform both locking and I/O functions. We then
proceed with the task of setting a lock.

Mapped files cannot be locked: if a file has been mapped, any attempt to
use file or record locking on the file fails. See mmap (2).

File and Record Locking 3-5

File Protection

Setting a File Lock

There are several ways for us to Set a lock on a file. In part, these methods
depend on how the lock interacts with the rest of the program. There are also
questions of performance as well as portability. Two methods will be given
here, one using the fcntl(2) system call, the other using the /usr/group stan­
dards compatible lockf library function call.

Locking an entire file is just a special case of record locking. For both these
methods the concept and the effect of the lock are the same. The file is locked
starting at a byte offset of zero (0) until the end of the maximum file size. This
point extends beyond any real end of the file so that no lock can be placed on
this file beyond this point. To do this the value of the size of the lock is set to
zero. The code using the fcntl system call is as follows:

3·6 System Services and Application Packaging Tools

File Protection

This portion of code tries to lock a file. This is attempted several times until
one of the following things happens:

• the file is locked

• an error occurs

• it gives up trying because MAX_TRY has been exceeded

File and Record Locking 3·7

File Protection

To perform the same task using the lockf function, the code is as follows:

It should be noted that the lockf example appears to be simpler, but the
fcntl(2) example exhibits additional flexibility. Using the fcntl(2) method, it
is possible to set the type and start of the lock request simply by setting a few
structure variables. lockf merely sets write (exclusive) locks; an additional sys­
tem call, lseek, is required to specify the start of the lock.

3-8 System Services and Application Packaging Tools

File Protection

Setting and Removing Record Locks

Locking a record is done the same way as locking a file except for the differing
starting point and length of the lock. We will now try to solve an interesting
and real problem. There are two records (these records may be in the same or
different file) that must be updated simultaneously so that other processes get a
consistent view of this information. (This type of problem comes up, for exam­
ple, when updating the interrecord pointers in a doubly linked list.) To do this
you must decide the following questions:

• What do you want to lock?

• For multiple locks, in what order do you want to lock and unlock the
records?

• What do you do if you succeed in getting all the required locks?

• What do you do if you fail to get all the locks?

In managing record locks, you must plan a failure strategy if you cannot obtain
all the required locks. It is because of contention for these records that we have
decided to use record locking in the first place. Different programs might:

• wait a certain amount of time, and try again

• abort the procedure and warn the user

• let the process sleep until signaled that the lock has been freed

• some combination of the above

Let us now look at our example of inserting an entry into a doubly linked list.
For the example, we will assume that the record after which the new record is
to be inserted has a read lock on it already. The lock on this record must be
changed or promoted to a write lock so that the record may be edited.

Promoting a lock (generally from read lock to write lock) is permitted if no
other process is holding a read lock in the same section of the file. If there are
processes with pending write locks that are sleeping on the same section of the
file, the lock promotion succeeds and the other (sleeping) locks wait. Promoting
(or demoting) a write lock to a read lock carries no restrictions. In either case,
the lock is merely reset with the new lock type. Because the /usr/group
lockf function does not have read locks, lock promotion is not applicable to
that call. An example of record locking with lock promotion follows:

File and Record Locking 3-9

File Protection

3-10 System Services and Application Packaging Tools

File Protection

The locks on these three records were all set to wait (sleep) if another process
was blocking them from being set. This was done with the F_SETLKW com­
mand. If the F_SETLK command was used instead, the fentl system calls
would fail if blocked. The program would then have to be changed to handle
the blocked condition in each of the error return sections.

Let us now look at a similar example using the loekf function. Since there are
no read locks, all (write) locks will be referenced generically as locks.

File and Record Locking 3-11

File Protection

3-12 System Services and Application Packaging Tools

File Protection

Locks are removed in the same manner as they are set, only the lock type is dif­
ferent(F_UNLCK or F_ULOCK). An unlock cannot be blocked by another pro­
cess and will only affect locks that were placed by this process. The unlock only
affects the section of the file defined in the previous example by 10k. It is pos­
sible to unlock or change the type of lock on a subsection of a previously set
lock. This may cause an additional lock (two locks for one system call) to be
used by the operating system. This occurs if the subsection is from the middle
of the previously set lock.

Getting Lock Information

You can determine which processes, if any, are blocking a lock from being set.
This can be used as a simple test or as a means to find locks on a file. A lock is
set up as in the previous examples and the F_GETLK command is used in the
fent1 call. If the lock passed to fent1 would be blocked, the first blocking
lock is returned to the process through the structure passed to fentl. That is,
the lock data passed to fent1 is overwritten by blocking lock information. This
information includes two pieces of data that have not been discussed yet, l_pid
and l_sysid, that are only used by F_GETLK. (For systems that do not sup­
port a distributed architecture the value in l_sysid should be ignored.) These
fields uniquely identify the process holding the lock.

If a lock passed to fent1 using the F _ GETLK command would not be blocked
by another process's lock, then the I_type field is changed to F _ UNLCK and the
remaining fields in the structure are unaffected. Let us use this capability to
print all the segments locked by other processes. Note that if there are several
read locks over the same segment only one of these will be found.

File and Record locking 3-13

File Protection

fcntl with the F_GETLK command will always return correctly (that is, it will
not sleep or fail) if the values passed to it as arguments are valid.

The lockf function with the F TEST command can also be used to test if there
is a process blocking a lock. rhls function does not, however, return the infor­
mation about where the lock actually is and which process owns the lock. A
routine using lockf to test for a lock on a file follows:

3-14 System Services and Application Packaging Tools

File Protection

When a process forks, the child receives a copy of the file descriptors that the
parent has opened. The parent and child. also share a common file pointer for
each file. If the parent were to seek to a l%jnt in the file, the child's file pointer
would also be at that location., This feature has important implications when
using record locking. The current value of the file pointer is used as the refer­
ence for the offset of the beginning of the lock, as described by l start, when
using a I_whence value of L If both the parent and child process set locks on
the same file, there is a possibility that a lock will be set using a file pointer that
was reset by the other process. This problem appears in the lockf(3) function
call as well and is a result of the lusr/qroup requirements for record locking.
If forking is used in a record locking program, the child process should close
and reopen the file if either locking method is used. This will result in the crea­
tion of a new and separate file pointer that can be manipulated without this
problem occurring. Another solution is to use the fcntl system call with a
I_whence value of 0 or 2. This makes the locking function atomic, so that even
processes sharing file pointers can be locked without difficulty.

File and Record Locking 3-15

File Protection

Deadlock Handling

There is a certain level of deadlock detection/avoidance built into the record
locking facility. This deadlock handling provides the same level of protection
granted by the lusr/group standard lockf call. This deadlock detection is
only valid for processes that are locking files or records on a single system.
Deadlocks can only potentially occur when the system is about to put a record
locking system call to sleep. A search is made for constraint loops of processes
that would cause the system call to sleep indefinitely. If such a situation is
found, the locking system call will fail and set errno to the deadlock error
number. If a process wishes to avoid the use of the systems deadlock detection
it should set its locks using F _ GETLK instead of F _ GETLKW.

3-16 System Services and Application Packaging Tools

Selecting Advisory or Mandatory Locking

The use of mandatory locking is not recommended for reasons that will be
made clear in a subsequent section. Whether or not locks are enforced by the
I/O system calls is determined at the time the calls are made by the permissions
on the file; see chmod(2). For locks to be under mandatory enforcement, the file
must be a regular file with the set-group-ID bit on and the group execute per­
mission off. If either condition fails, all record locks are advisory. Mandatory
enforcement can be assured by the following code:

Files that are to be record locked should never have any type of execute permis­
sion set on them. This is because the operating system does not obey the record
locking protocol when executing a file.

The chrnod(l) command can also be easily used to set a file to have mandatory
locking. This can be done with the command:

chmod +1 file

File and Record Locking 3-17

Selecting Advisory or Mandatory locking

The 18(1) command shows this setting when you ask for the long listing format:

18 -1 file

causes the following to be printed:

-rw---1--- 1 user group size mod time file

Caveat Emptor-Mandatory Locking

• Mandatory locking only protects those portions of a file that are locked.
Other portions of the file that are not locked may be accessed according to
normal UNIX system file permissions.

• If multiple reads or writes are necessary for an atomic transaction, the
process should explicitly lock all such pieces before any I/O begins. Thus
advisory enforcement is sufficient for all programs that perform in this
way.

• As stated earlier, arbitrary programs should not have unrestricted access
permission to files that are important enough to record lock.

• Advisory locking is more efficient because a record lock check does not
have to be performed for every I/O request.

Record Locking and Future Releases of the UNIX
System

Provisions have been made for file and record locking in a UNIX system
environment. In such an environment the system on which the locking process
resides may be remote from the system on which the file and record locks
reside. In this way multiple processes on different systems may put locks upon
a single file that resides on one of these or yet another system. The record locks
for a file reside on the system that maintains the file. It is also important to
note that deadlock detection/avoidance is only determined by the record locks
being held by and for a single system. Therefore, it is necessary that a process
only hold record locks on a single system at any given time for the deadlock
mechanism to be effective. If a process needs to maintain locks over several sys­
tems, it is suggested that the process avoid the sleep-when-blocked features of

3-18 System Services and Application Packaging Tools

Selecting Advisory or Mandatory Locking

fentl or loekf and that the process maintain its own deadlock detection. If
the process uses the sleep-when-blocked feature, then a timeout mechanism
should be provided by the process so that it does not hang waiting for a lock to
be cleared.

File and Record Locking 3-19

I
I
I
I
I
I
I
I

I
I
I
I
I

i
I
I
I
I

I
I
I
I

i
I
I
I

I
I
I
I

4 Interprocess Communication

Introduction

Mess~ges
Using Messages
Getting Message Queues

• Using msgget
• Example Program

Controlling Message Queues
• Using msgctl
• Example Program

Operations for Messages
• Using msgop
• Example Program

Semaphores
Using Semaphores
Getting SemaphOres

• Using semget
• ExamR'ePro~ram

Controlling Semaphores
• Using semetl
• Example Program

Operations on Sem~phores
• Using semop
• Example Program

Table of Contents

4-1

4-3
4-4
4-7
4-8
4-11
4-14
4-14
4-15
4-21
4-21
4-23

4-32
4-34
4~37

4-37
4-41
4-44
4~44

4-46
4-56
4-56
4-57

Table of Contents

Shared Memory
Using Shared Memory
Getting Shared Memory Segments

• Using shmget
• Example Program

Controlling Shared Memory
• Using shmctl
• Example Program

Operations for Shared Memory
• Using shmop
• Example Program

4-63
4-64
4-67
4-67
4-70
4-73
4-74
4-75
4-81
4-81
4-83

II System Services and Application Packaging Tools

Introduction

UNIX System V Release 4.0 provides several mechanisms that allow processes to
exchange data and synchronize execution. The simpler of these mechanisms are
pipes, named pipes, and signals. These are limited, however, in what they can
do. For instance,

• Pipes do not allow unrelated processes to communicate.

• Named pipes allow unrelated processes to communicate, but they cannot
provide private channels for pairs of communicating processes; that is,
any process with appropriate permission may read from or write to a
named pipe.

• Sending signals, via the kill system call, allows arbitrary processes to
communicate, but the message consists only of the signal number.

Release 4.0 also provides an InterProcess Communication (IPC) package that
supports three, more versatile types of interprocess communication. For exam­
ple,

• Messages allow processes to send formatted data streams to arbitrary
processes.

• Semaphores allow processes to synchronize execution.

• Shared memory allows processes to share parts of their virtual address
space.

When implemented as a unit, these three mechanisms share common properties
such as

• each mechanism contains a "get" system call to create a new entry or
retrieve an existing one

• each mechanism contains a "control" system call to query the status of an
entry, to set status information, or to remove the entry from the system

• each mechanism contains an "operations" system call to perform various
operations on an entry

This chapter describes the system calls for each of these three forms of IPe.

Interprocess Communication 4-1

Introduction

This information is for programmers who write multiprocess applications. These
programmers should have a general understanding of what semaphores are and
how they are used.

Information from other sources would also be helpful. See the ipcs(1) and
ipc~m(1) manual pages in the User's Reference Manual and the following manual
pages in the Programmer's Reference Manual:

intro(2)
msgqet(2)
senqet(2)
shmget(2)

msqctl(2)
semctl(2)
slunctl(2)

msqop(2)
seJIPp(2)
shIoop(2)

Included in this chapter are several example programs that show the use of
these !PC system calls. Since there are many ways to accomplish the same task
or requirement, keep in mind that the example programs were written for clar­
ity and not for program efficiency. Usually, system calls are embedded within a
larger user-written program that makes use of a particular function provided by
the calls.

4-2 System Services and Application Packaging Tools

Messages

The message type of IPC allows processes (executing programs> to communicate
through the exchange of data stored in buffers. This data is transmitted
between processes in discrete portions called messages. Processes using this
type of IPC can send and receive messages.

Before a process can send or receive a message, it must have the UNIX operat­
ing system generate the necessary software mechanisms to handle these opera­
tions. A process does this using the msgget system call. In doing this, the pro­
cess becomes the owner/creator of a message queue and specifies the initial
operation permissions for all processes, including itself. Subsequently, the
owner/creator can relinquish ownership or change the operation permissions
using the msgctl system call. However, the creator remains the creator as long
as the facility exists. Other processes with permission can use msgctl to per­
form various other control functions.

Processes which have permission and are attempting to send or receive a mes­
sage can suspend execution if they are unsuccessful at performing their opera­
tion. That is, a process which is attempting to send a message can wait until it
becomes possible to post the message to the specified message queue; the receiv­
ing process isn't involved (except indirectly, e.g., if the consumer isn't consum­
ing, the queue space will eventually be exhausted) and vice versa. A process
which specifies that execution is to be suspended is performing a "blocking mes­
sage operation." A process which does not allow its execution to be suspended
is performing a "nonblocking message operation."

A process performing a blocking message operation can be suspended until one
of three conditions occurs:

• It is successful.

• It receives a signal.

• The message queue is removed from the system.

System calls make these message capabilities available to processes. The calling
process passes arguments to a system call, and the system call either success­
fully or unsuccessfully performs its function. If the system call is successful, it
performs its function and returns applicable information. Otherwise, a known
error code (-1) is returned to the process, and an external error number vari­
able, errno, is set accordingly.

Interprocess Communication 4-3

Messages

Using Messages

Before a message can be sent or received, a uniquely identified message queue
and data structure must be created. The unique identifier is called the message
queue identifier (msqid); it is used to identify or refer to the associated message
queue and data structure.

The message queue is used to store (header) information about each message
being sent or received. This information, which is for internal use by the sys­
tem, includes the following for each message:

• pointer to the next message on queue

• message type

• message text size

• message text address

There is one associated data structure for the uniquely identified message
queue. This data structure contains the following information related to the
message queue:

• operation permissions data (operation permission structure)

• pointer to first message on the queue

• pointer to last message on the queue

• current number of bytes on the queue

• number of messages on the queue

• maximum number of bytes on the queue

• process identification (PID) of last message sender

• PID of last message receiver

• last message send time

• last message receive time

• last change time

4-4 System Services and Application Packaging Tools

Messages

All include files discussed in this chapter are located in the /usr/include
or /usr/include/sys directories.

The structure definition for the associated data structure is as follows:

It is located in the <sys/rnsg. h> header file. Note that the rnsgyerrn member
of this structure uses ipcyerrn as a template. Figure 4-1 shows the breakout
for the operation permissions data structure.

The definition of the ipc yerrn data structure is as follows:

Interprocess Communication 4-5

Messages

Figure 4-1: ipc-Pf!rm Data Structure

It is located in the <sys/ ipc. h> header file and is common to all IPC facilities.

The msgget system call is used to perform one of two tasks:

• to get a new message queue identifier and create an associated message
queue and data structure for it

• to return an existing message queue identifier that already has an associ­
ated message queue and data structure

Both tasks require a key argument passed to the msgget system call. For the
first task, if the key is not already in use for an existing message queue
identifier, a new identifier is returned with an associated message queue and
data structure created for the key. This occurs as long as no system-tunable
parameters would be exceeded and a control command IPC_CREAT is specified
in the msgflg argument passed in the system call.

There is also a provision for specifying a key of value zero, known as the
private key (IPC_PRIVATE). When specified, a new identifier is always
returned with an associated message queue and data structure created for it
unless a system-tunable parameter would be exceeded. The ipcs command
will show the KEY field for the msqid as all zeros.

For the second task, if a message queue identifier exists for the key specified,
the value of the existing identifier is returned. If you do not want to have an
existing message queue identifier returned, a control command (IPC_EXCL) can

4-6 System Services and Application Packaging Tools

Messages

be specified (set) in the msqflq argument passed to the system call. ("Using
msqqet" describes how to use this system call.)

When performing the first task, the process that calls msqqet becomes the
owner/creator, and the associated data structure is initialized accordingly.
Remember, ownership can be changed but the creating process always remains
the creator. The message queue creator also determines the initial operation
permissions for it.

Once a uniquely identified message queue and data structure are created,
msqop (message operations) and msqctl (message control) can be used.

Message operations, as mentioned before, consist of sending and receiving mes­
sages .. The msqsnd and msqrcv system calls are provided for each of these
operations (see "Operations for Messages" for details ofthese system calls).

The msqctl system call permits you to control the message facility in tl\e fol­
lowing ways:

• by retrieving the data structure associated with a message queue identifier
(IPC _STAT)

• by changing operation permissions for a message queue (!PC_SET)

• by changing the size (msq_qbytes) of the message queue for a particular
message queue identifier (!PC_SET)

• by removing a particular message queue identifier from the UNIX operat­
ing system along with its associated message queue and data structure
(IPC_RMID)

See "Controlling Message Queues" for msqctl system call details.

Getting Message Queues

This section describes how to use the msqqet system call. The accompanying
program illustrates its use.

Interprocess Communication 4-7

Messages

Using msgget
The synopsis found in the msgget(2) entry in the Programmer's Reference Manual
is as follows:

All of these include files are located in the /usr/include/sys directory of
the UNIX operating system.

The following line in the synopsis:

int msgget (key, msgflg)

informs you that msgget is a function with two formal arguments that returns
an integer-type value. The next two lines:

key_t key;
int msgflg;

declare the types of the formal arguments. key_t is defined by a typedef in
the <sys/types . h> header file to be an integral type.

The integer returned from this function upon successful completion is the mes­
sage queue identifier that was discussed earlier. Upon failure, the external vari­
able errno is set to indicate the reason for failure, and the value -1 (which is
not a valid msqid) is returned.

As declared, the process calling the msgget system call must supply two argu­
ments to be passed to the formal key and msgflg arguments.

A new msqid with an associated message queue and data structure is provided
if either

4-8 System Services and Application Packaging Tools

Messages

• key is equal to IPC_PRIVATE,

or

• key is a unique integer and the control command IPC _ CREAT is specified
in the msgflg argument.

The value passed to the msgflg argument must be an integer-type value that
will specify the following:

• operations permissions

• control fields (commands)

Operation permissions determine the operations that processes are permitted to
perform on the associated message queue. "Read" permission is necessary for
receiving messages or for determining queue status by means of a msgctl
IPC _STAT operation. "Write" permission is necessary for sending messages.
Figure 4-2 reflects the numeric values (expressed in octal notation) for the valid
operation permissions codes.

Figure 4-2: Operation Permissions Codes

Operation Permissions
Read by User
Write by User
Read by Group
Write by Group
Read by Others
Write by Others

Octal Value
00400
00200
00040
00020
00004
00002

A specific value is derived by adding or bitwise ORing the octal values for the
operation permissions wanted. That is, if read by user and read/write by others
is desired, the code value would be 00406 (00400 plus 00006). There are con­
stants located in the <sys/msg . h> header file which can be used for the user
operations permissions. They are as follows:

MSG W 0200 /* write permissions by owner */

MSG R 0400 /* read permissions by owner */

Interprocess Communication 4-9

Messages

Control flags are predefined constants (represented by all uppercase letters).
The flags which apply to the msgget system call are IPC_CREAT and
IPC_EXCL and are defined in the <sys/ipc.h> header file.

The value for msgflg is therefore a combination of operation permissions and
control commands. After determining the value for the operation permissions
as previously described, the desired flag(s) can be specified. This is accom­
plished by adding or bitwise ORing (I) them with the operation permissions;
the bit positions and values for the control commands in relation to those of the
operation permissions make this possible.

The msgflg value can easily be set by using the flag names in conjunction with
the octal operation permiSSions value:

msqid = msgget (key, (IPC_CREAT 0400»;

msqid - msgget (key, (IPC_CREAT IPC EXCL I 0400»;

As specified by the msgget(2) page in the Programmer's Reference Manual, suc­
cess or failure of this system call depends upon the argument values for key
and msgflg or system-tunable parameters. The system call will attempt to
return a new message queue identifier if one of the following conditions is true:

• key is equal to IPC_PRIVATE

• key does not already have a message queue identifier associated with it
and (msgflg and IPC _ CREAT) is "true" (not zero).

The key argument can be set to IPC_PRIVATE like this:

msqid = msgget (IPC_PRIVATE, msgflg);

The system call will always be attempted. Exceeding the MSGMNI system­
tunable parameter always causes a failure. The MSGMNI system-tunable param­
eter determines the systemwide number of unique message queues that may be
in use at any given time.

IPC_EXCL is another control command used in conjunction with IPC_CREAT.
It will cause the system call to return an error if a message queue identifier
already exists for the specified key. This is necessary to prevent the process
from thinking that it has received a new identifier when it has not. In other
words, when both IPC_CREAT and IPC_EXCL are specified, a new message
queue identifier is returned if the system call is successful.

4-10 System Services and Application Packaging Tools

Messages

Refer to the msgget(2) page in the Programmer's Reference Manual for specific,
associated data structure initialization for successful completion. The specific
failure conditions and their error names are contained there also.

Example Program

Figure 4-3 is a menu-driven program. It allows all possible combinations of
using the msgget system call to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are
pointed out.

This program begins (lines 4-8) by including the required header files as
specified by the msgget(2) entry in the Programmer's Reference Manual. Note
that the <sys/ errno. h> header file is included as opposed to declaring errno
as an external variable; either method will work.

Variable names have been chosen to be as close as possible to those in the
synopsis for the system call. Their declarations are self explanatory. These
names make the programs more readable are perfectly legal since they are local
to the program. The variables declared for this program and what they are
used for are as follows:

key

opperm

flags

opperm_flags

msqid

used to pass the value for the desired key

used to store the desired operation permissions

used to store the desired control commands (flags)

used to store the combination from the logical ORing of the
opperm and flags variables; it is then used in the system
call to pass the msgflg argument

used for returning the message queue identification number
for a successful system call or the error code (-1) for an
unsuccessful one.

The program begins by prompting for a hexadecimal key, an octal operation
permissions code, and finally for the control command combinations (flags)
which are selected from a menu (lines 15-32). All possible combinations are
allowed even though they might not be viable. This allows errors to be
observed for illegal combinations.

Interprocess Communication 4-11

Messages

Next, the menu selection for the flags is combined with the operation permis­
sions, and the result is stored in the opperm_flags variable (lines 36-51).

The system call is made next, and the result is stored in the msqid variable (line
53).

Since the msqid variable now contains a valid message queue identifier or the
error code (-1), it is tested to see if an error occurred (line 55). If msqid equals
-1, a message indicates that an error resulted, and the external errno variable
is displayed (line 57).

If no error occurred, the returned message queue identifier is displayed (line
61).

The example program for the msgget system call follows. We suggest you
name the program file msgget . c and the executable file msgget.

Figure 4-3: msgqet System can Example

4·12 System Services and Application Packaging Tools

Messages

Figure 4-3: msgget System call Example (continued)

Interprocess Communication 4-13

Messages

Figure 4-3: magget System Call Example (continued)

Controlling Message Queues

This section describes how to use the msgctl system call. The accompanying
program illustrates its use.

Using msgctl

The synopsis found in the msgctl(2) entry in the Programmer's Reference Manual
is as follows:

The msgctl system call requires three arguments to be passed to it; it returns
an integer-type value.

When successful, it returns a zero value; when unsuccessful, it returns a -1.

The msqid variable must be a valid, non-negative, integer value. In other
words, it must have already been created by using the msgget system call.

4-14 System Services and Application Packaging Tools

Messages

The enid argument can be anyone of the following values:

IPC STAT return the status information contained in the associated data
structure for the specified message queue identifier, and
place it in the data structure pointed to by the buf pointer in
the user memory area.

IPC SET for the specified message queue identifier, set the effective
user and group identification, operation permissions, and the
number of bytes for the message queue to the values con­
tained in the data structure pointed to by the buf pointer in
the user memory area.

IPC RMID remove the specified message queue identifier along with its
associated message queue and data structure.

A process must have an effective user identification of OWNER/CREATOR or
superuser toperfonn an IPC_SET or IPC_RMID control command. Read per­
mission is required to perform the IPC ~ STAT control command.

The details of this system call are discussed in the following example program.
If you need more information on the logic manipulations in this program, read
themsqqet(2) section of the Programmer's Reference Manual; it goes into more
detail than would be practical for this document.

Example Program
Figure 4-4 is a menu-driven program. It allows all possible combinations of
using the msqetl system call to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are
pointed out.

This program begins (lines 5-9) by including the required header files as
specified by the msqetl(2) entry in the Programmer's Reference Manual. Note in
this program that errno is declared as an external variable, and therefore, the
<sys/errno. h> header file does not have to be included.

Variable and structure names have been chosen to be as close as possible to
those in the synopsis for the system call. Their declarations are self explanatory.
These names make the program more readable and are perfectly legal since they

Interproc8SS Communication 4-15

Messages

are local to the program. The variables declared for this program and what
they are used for are as follows:

uid

gid

mode

bytes

rtrn

msqid

command

choice

buf

used to store the IPC SET value for the effective user
identification

used to store the IPC_SET value for the effective group
identification

used to store the IPC_SET value for the operation permis­
sions

used to store the IPC _SET value for the number of bytes in
the message queue (msg_qbytes)

used to store the return integer value from the system call

used to store and pass the message queue identifier to the
system call

used to store the code for the desired control command so
that subsequent processing can be performed on it

used to determine which member is to be changed for the
IPC SET control command

used to receive the specified message queue identifier's data
structure when an IPC _STAT control command is performed

a pointer passed to the system call which locates the data
structure in the user memory area where the IPC _STAT con­
trol command is to place its return values or where the
IPC_SET command gets the values to set

Note that the msqid _ ds data structure in this program (line 16) uses the data
structure, located in the <sys/msg. h> header file of the same name, as a tem­
plate for its declaration.

The next important thing to observe is that although the buf pointer is declared
to be a pointer to a data structure of the msqid _ ds type, it must also be initial­
ized to contain the address of the user memory area data structure (line 17).
Now that all of the required declarations have been explained for this program,
this is how it works.

4-16 System Services and Application Packaging Tools

Messages

First, the program prompts for a valid message queue identifier which is stored
in the msqid variable (lines 19, 20). This is required for every msqctl system
call.

Then the code for the desired control command must be entered (lines 21-27)
and stored in the command variable. The code is tested to determine the con­
trol command for subsequent processing.

H the IPC_STAT control command is selected (code 1), the system call is per­
formed (lines 37, 38) and the status information returned is printed out (lines
39-46); only the members that can be set are printed out in this program. Note
that if the system call is unsuccessful (line 106), the status information of the last
successful call is printed out. In addition, an error message is displayed and the
errno variable is printed out (line 108). H the system call is successful, a mes­
sage indicates this along with the message queue identifier used (lines 110-113).

H the IPC_SET control command is selected (code 2), the first thing is to get the
current status information for the message queue identifier specified Oines 50-
52). This is necessary because this example program provides for changing only
one member at a time, and the system call changes all of them. Also, if an
invalid value happened to be stored in the user memory area for one of these
members, it would cause repetitive failures for this control command until
corrected. The next thing the program does is to prompt for a code correspond­
ing to the member to be changed (lines 53-59). This code is stored in the choice
variable (line 60). Now, depending upon the member picked, the program
prompts for the new value (lines 66-95). The value is placed into the appropri­
ate member in the user memory area data structure, and the system call is made
(lines 96-98). Depending upon success or failure, the program returns the same
messages as for IPC _STAT above.

H the IPC_RMID control command (code 3) is selected, the system call is per­
formed (lines 100-103), and the msqid along with its associated message queue
and data structure are removed from the UNIX operating system. Note that the
buf pointer is ignored in performing this control command, and its value can
be zero or NULL. Depending upon the success or failure, the program returns
the same messages as for the other control commands.

The example program for the msqctl system call follows. We suggest that you
name the source program file msqctl. c and the executable file msqctl.

Interproce88 Communication 4-17

Messages

Figure 4-4: msgctl System call Example

4-18 System Services and Application Packaging Tools

Messages

Figure 4-4: msgctl System Call Example (continued)

Interprocess Communication 4-19

Messages

Figure 4-4: 1lI8gctl System Call Example (continued)

4-20 System Services and Application Packaging Tools

Messages

Operations for Messages

This section describes how to use the msgsnd and msgrcv system calls. The
accompanying program illustrates their use.

Using msgop
The synopsis found in the msgop(2) entry in the Programmer's Reference Manual
is as follows:

Sending a Message
The msgsnd system call requires four arguments to be passed to it. It returns
an integer value.

When successful, it returns a zero value; when unsuccessful, msgsnd returns a
-1.

The msqid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the msgget system call.

The msgp argument is a pointer to a structure in the user memory area that
contains the type of the message and the message to be sent.

Interprocess Communication 4-21

Messages

The msgs z argument specifies the length of the character array in the data
structure pointed to by the msqp argument. This is the length of the message.
The maximum size of this array is determined by the MSGMAX system-tunable
parameter.

The msgflg argument allows the "blocking message operation" to be performed
if the Il?C_NOWAIT flag is not set «msgflg and IPC_NOWAIT)= = 0); the opera­
tion would block if the total number of bytes allowed on the specified message
queue are in use (msg_qbytes or MSGMNB), or the total system-wide number of
messages on all queues is equal to the system- imposed limit (MSGTQL). If the
IPC_NOWAIT flag is set, the system call will fail and return a -1.

The msg_qbytes data structure member can be lowered from MSGMNB by
using the msgctl IPC_SET control command, but only the superuser can raise
it afterwards.

Further details of this system call are discussed in the following program. If
you need more information on the logic manipulations in this program, read
"Using msgget". It goes into more detail than would be practical for every sys­
tem call.

Receiving Messages
The msgrcv system call requires five arguments to be passed to it; it returns an
integer value.

When successful, it returns a value equal to the number of bytes received; when
unsuccessful it returns a -1.

The msqid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the msgget system call.

The msqp argument is a pointer to a structure in the user memory area that will
receive the message type and the message text.

The msgsz argument specifies the length of the message to be received. If its
value is less than the message in the array, an error can be returned if desired
(see the msgflg argument below).

The msqtyp argument is used to pick the first message on the message queue
of the particular type specified. If it is equal to zero, the first message on the
queue is received; if it is greater than zero, the first message of the same type is
received; if it is less than zero, the lowest type that is less than or equal to its
absolute value is received.

4-22 Systel'l\ Services and Application Packaging Tools
~ \{§

Messages

The msgflg argument allows the "blocking message operation" to be performed
if the IPC_NOWAIT flag is not set «msgflg and IPC_NOWAIT)== 0); the opera­
tion would block if there is not a message on the message queue of the desired
type (msgtyp) to be received. If the IPC_NOWAIT flag is set, the system call
Will fail immediately when there is not a message of the desired type on the
queue. magfle] can also specify that the system call fail if the message is longer
than the size to be received; this is done by not setting the MSG_NOERROR flag
in the msgflg argument «msgflg andMSG_NOERROR» == 0). If the
MSG _ NOERROR flag is set, the message is truncated to the length specified by the
msgsz argument of msgrcv.

Further details of this system call are discussed in the following program. If
you need more information on the logic manipulations in this program read
"Using msgget". It goes into more detail than would be practical for every sys­
tem call.

Example Program
Figure 4-5 is a menu-driven program. It allows all possible combinations of
using the msgsnd and msgrcv system calls to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are
pointed out.

This program begins (lines 5-9) by including the required header files as
specified by the msgop(2) entry in the Programmer's Reference Manual. Note that
in this progratll. errno is declared as an external variable; therefore, the
<sys/errno. h> header file does not have to be included.

Variable and structure names have been chosen to be as close as possible to
those in the synopsis. Their declarations are self explanatory. These names
make the program more readable and. are perfectly legal since they are local to
the program. The variables declared for this program and what they are used
for are as follows:

sndbuf used as a buffer to contain a message to be sent (line 13); it
uses themsgbufl data structure as a template (lines 10-13).
The msgbufl structure (lines 10-13) is a duplicate of the
msgbuf structure contained in the <sys/msg. h> header
file, ~cept that the size of the character array for mtext is
tailored to fit this application. The msgbuf structure should

Interprocess Communication 4-23

Messages

rcvbuf

msgp

i

c

flag

flags

choice

rtrn

msqid

msgsz

msgflg

msgtyp

4-24

not be used directly because mtext has only one element
that would limit the size of each message to one character.
Instead, declare your own structure. It should be identical to
msgbuf except that the size of the mtext array should fit
your application.

used as a buffer to receive a message (line 13); it uses the
msgbufl data structure as a template (lines 10-13)

used as a pointer (line 13) to both the sndbuf and rcvbuf
buffers

used as a counter for inputting characters from the keyboard,
storing them in the array, and keeping track of the message
length for the msgsnd system call; it is also used as a
counter to output the received message for the msgrcv sys­
tem call

used to receive the input character from the getchar func­
tion (line 50)

used to store the code of IPC_NOWAIT for the msgsnd sys­
tem call (line 61)

used to store the code of the IPC NOWAIT or MSG NOERROR
flags for the msgrcv system call ITine 117) -

used to store the code for sending or receiving (line 30)

used to store the return values from all system calls

used to store and pass the desired message queue identifier
for both system calls

used to store and pass the size of the message to be sent or
received

used to pass the value of flag for sending or the value of
flags for receiving

used for specifying the message type for sending or for pick­
ing a message type for receiving.

System Servrces and Application Packaging Tools

Messages

Note that a msqid_ds data structure is set up in the program (line 21) with a
pointer initialized to point to it (line 22); this will allow the data structure
members affected by message operations to be observed. They are observed by
using the msgctl (IPC_STAT) system call to get them for the program to print
them out (lines 80-92 and lines 160-167).

The first thing the program prompts for is whether to send or receive a mes­
sage. A corresponding code must be entered for the desired operation; it is
stored in the choice variable (lines 23-30). Depending upon the code, the pro­
gram proceeds as in the following msgsnd or msgrcv sections.

msgsnd

When the code is to send a message, the msgp pointer is initialized (line 33) to
the address of the send data structure, sndbuf. Next, a message type must be
entered for the message; it is stored in the variable msgtyp (line 42), and then
(line 43) it is put into the mtype member of the data structure pointed to by
msgp.

The program now prompts for a message to be entered from the keyboard and
enters a loop of getting and storing into the mtext array of the data structure
(lines 48-51). This will continue until an end-of-file is recognized which, for the
get char function, is a control-D (CfRL-D) immediately following a carriage
return «Clb).

The message is immediately echoed from the mtext array of the sndbuf data
structure to provide feedback (lines 54-56).

The next and final thing that must be decided is whether to set the
IPC_NOWAIT flag. The program does this by requesting that a code of a 1 be
entered for yes or anything else for no (lines 57-65). It is stored in the flag vari­
able. If a 1 is entered, IPC_NOWAIT is logically ORed with msgflg; otherwise,
msgflg is set to zero.

The msgsnd system call is performed (line 69). If it is unsuccessful, a failure
message is displayed along with the error number (lines 70-72). If it is success­
ful, the returned value is printed and should be zero (lines 73-76).

Every time a message is successfully sent, three members of the associated data
structure are updated. They are:

Interprocess Communication 4-25

Messages

msq_qnum represents the total number of messages on the message
queue; it is incremented by one.

msq_lspid contains the process identification (PID) number of the last
process sending a message; it is set accordingly.

msq_stime contains the time in seconds since January 1, 1970, Greenwich
Mean Time (GMT) of the last message sent; it is set accord­
ingly.

These members are displayed after every successful message send operation
(lines 79-92).

msqrcv
When the code is to receive a message, the program continues execution as in
the following paragraphs.

The msqp pointer is initialized to the rcvbuf data structure (line 99).

Next, the message queue identifier of the message queue from which to receive
the message is requested; it is stored in msqid (lines 100-103).

The message type is requested; it is stored in msqtyp (lines 104-107).

The code for the desired combination of control flags is requested next; it is
stored in flags (lines 108-117). Depending upon the selected combination,
msqflq is set accordingly (lines 118-131).

Finally, the number of bytes to be received is requested; it is stored in msqsz
(lines 132-135).

The msqrcv system call is performed (line 142). If it is unsuccessful, a message
and error number is displayed (lines 143-145). If successful, a message indicates
so, and the number of bytes returned and the msq type returned (because the
value returned may be different from the value requested) is displayed followed
by the received message (lines 150-156).

When a message is successfully received, three members of the associated data
structure are updated. They are:

4·26

contains the number of messages on the message queue; it is
decremented by one.

System Services and Application Packaging Tools

Messages

msc;c lrpid contains the PID of the last process receiving a message; it is
set accordingly.

msg_rtime contains the time in seconds since January 1, 1970, Greenwich
Mean Time (GMT) that the last process received a message; it
is set accordingly.

Figure 4-5 shows the msgop system calls. We suggest that you put the program
into a source file called msgop . c and then compile it into an executable file
called msgop.

Figure 4-5: msgop System call Example

Interprocess Communication 4-27

Messages

Figure 4-5: msgop System Call Example (continued)

4-28 System Services and Application Packaging Tools

Messages

Figure 4-5: msgop System Call Example (continued)

Interprocess Communication 4-29

Messages

Figure 4-5: msqop System can Example (continued)

4-30 System Services and Application Packaging Tools

Messages

Figure 4-5: msgop System call Example (continued)

Interprocess Communication 4-31

Semaphores

The semaphore type of !PC allows processes (executing programs) to communi­
cate through the exchange of semaphore values. Since many applications
require the use of more than one semaphore, the UNIX operating system has
the ability to create sets or arrays of semaphores. A semaphore set can contain
one or more semaphores up to a limit set by the system administrator. The tun­
able parameter, SEMMSL, has a default value of 25. Semaphore sets are created
by using the semget (semaphore get) system call.

The process performing the semget system call becomes the owner/creator,
determines how many semaphores are in the set, and sets the initial operation
permissions for all processes, including itself. This process can subsequently
relinquish ownership of the set or change the operation permiSSions using the
semetl(semaphore control) system call. The creating process always remains
the creator as long as the facility exists. Other processes with permission can
use semetl to perform other control functions.

Any process can manipulate the semaphore(s) if the owner of the semaphore
grants permission. Each semaphore within a set can be incremented and decre­
mented with the semop(2) system call (documented in the Programmer's Refer­
ence Manual).

To increment a semaphore, an integer value of the desired magnitude is passed
to the semop system call. To decrement a semaphore, a minus (-) value of the
desired magnitude is passed.

The UNIX operating system ensures that only one process can manipulate a
semaphore set at any given time. Simultaneous requests are performed sequen­
tially in an arbitrary manner.

A process can test for a semaphore value to be greater than a certain value by
attempting to decrement the semaphore by one more than that value. If the
process is successful, then the semaphore value is greater than that certain
value. Otherwise, the semaphore value is not. While doing this, the process
can have its execution suspended (IPC_NOWAIT flag not set) until the sema­
phore value would permit the operation (other processes increment the sema­
phore), or the semaphore facility is removed.

The ability to suspend execution is called a "blocking semaphore operation."
This ability is also available for a process which is testing for a semaphore equal
to zero; only read permission is required for this test; it is accomplished by
passing a value of zero to the semop (semaphore operation) system call.

4-32 System Services and Application Packaging Tools

Semaphores

On the other hand, if the process is not successful and did not request to have
its execution suspended, it is called a "nonblocking semaphore operation." In
this case, the process is returned a known error code (-1), and the external
errno variable is set accordingly.

The blocking semaphore operation allows processes to communicate based on
the values of semaphores at different points in time. Remember also that !PC
facilities remain in the UNIX operating system until removed by a permitted
process or until the system is reinitiali~.

Operating on a semaphore set is done by using the semop system call.

When a set of semaphores is created, the first semaphore in the set is semaphore
number zero. The last semaphore number in the set is numbered one less than
the total in the set.

A single system call can be used to perform a sequence of these
"blocking/nonblocking operations" on a set of semaphores. When performing a
sequence of operations, the blocking/nonblocking operations can be applied to
any or all of the semaphores in the set. Also, the operations can be applied in
any order of semaphore number. However, no operations are done until they
can all be done successfully. For example, if the first three of six operations on
a set of ten semaphores cOuld be completed successfully, but the fourth opera­
tion would be blocked, no changes are made to the set until all six operations
can be performed without blocking. Either the operations are successful and the
semaphores are changed, or one ("nonblocking") operation is unsuccessful and
none are changed. In short, the operations are "atomically performed."

Remember, any unsuccessful nonblocking operation for a single semaphore or a
set of semaphores causes immediate return with no operations performed at all.
When this occurs, an error code (-1) is returned to the process, and the external
variable errno is set accordingly.

System calls (documented in the Programmer's Reference Manual) make these
semaphore capabilities available to processes. The calling process passes argu­
ments to a system call, and the system call either successfully or unsuccessfully
performs its function. If the system call is successful, it performs its function
and returns the appropriate information. Otherwise, a known error code (-1) is
returned to the process, and the external variable errno is set accordingly.

Interprocess Communication 4·33

Semaphores

Using Semaphores

Before semaphores can be used (operated on or controlled) a uniquely identified
data structure and semaphore set (array) must be created. The unique identifier
is called the semaphore set identifier (semi d); it is used to identify or refer to a
particular data structure and semaphore set.

The semaphore set contains a predefined number of structures in an array, one
structure for each semaphore in the set. The number of semaphores (nsems) in
a semaphore set is user selectable. The following members are in each structure
within a semaphore set:

• semaphore value

• PID performing last operation

• number of processes waiting for the semaphore value to become greater
than its current value

• number of processes waiting for the semaphore value to equal zero

There is one associated data structure for the uniquely identified semaphore set.
This data structure contains the following inforination related to the semaphore
set:

• operation permissions data (operation permissions structure)

• pointer to first semaphore in the set (array)

• number of semaphores in the set

• last semaphore operation time

• last semaphore change time

The C programming language data structure definition for the semaphore set
(array member) is as follows:

4-34 System Services and Application Packaging Tools

Semaphores

It is located in the <sys/sem. h> header file.

Likewise, the structure definition for the associated semaphore data structure is
as follows:

It is also located in the <sys/sem. h> header file. Note that the semyerm
member of this structure uses ipcyerm as a template. Figure 4-1 shows the
breakout for the operation permissions data structure.

The ipc ""'perm data structure is the same for all IPC facilities; it is located in the
<sys/ipc.h> header file and is shown in the "Messages" section.

The semqet system call is used to perform two tasks:

• to get a new semaphore set identifier and create an associated data struc­
ture and semaphore set for it

Interprocess Communication 4-35

Semaphores

• to return an existing semaphore set identifier that already has an associ­
ated data structure and semaphore set

The task performed is determined by the value of the key argument passed to
the semget system call. For the first task, if the key is not already in use for
an existing semid and the IPC _ CREAT flag is set, a new semid is returned
with an associated data structure and semaphore set created for it provided no
system tunable parameter would be exceeded.

There is also a provision for specifying a key of value zero (0), which is known
as the private key (IPC_PRIVATE). When specified, a new identifier is always
returned with an associated data structure and semaphore set created for it,
unless a system-tunable parameter would be exceeded. The ipes command
will show the key field for the semid as all zeros.

When performing the first task, the process which calls semget becomes the
owner/creator, and the associated data structure is initialized accordingly.
Remember, ownership can be changed, but the creating process always remains
the creator (see "Controlling Semaphores"). The creator of the semaphore set
also determines the initial operation permissions for the facility.

For the second task, if a semaphore set identifier exists for the key specified, the
value of the existing identifier is returned. If you do not want to have an exist­
ing semaphore set identifier returned, a control command (IPC_EXCL) can be
specified (set) in the semflg argument passed to the system call. The system
call will fail if it is passed a value for the number of semaphores (nsems) that is
greater than the number actually in the set; if you do not know how many
semaphores are in the set, use 0 for nsems. ("Using semget" describes how to
use this system call.)

Once a uniquely identified semaphore set and data structure are created, semop
(semaphore operations) and semetl (semaphore control) can be used.

Semaphore operations consist of incrementing, decrementing, and testing for
zero. The semop system call is used to perform these operations (see "Opera­
tions on Semaphores" for details of this system call).

The semetl system call permits you to control the semaphore facility in the fol­
lowing ways:

4·36 System Services and Application Packaging Tools

Semaphores

• by returning the value of a semaphore (GETVAL)

• by setting the value of a semaphore (SETVAL)

• by returning the PID of the last process performing an operation on a
semaphore set (GETP1D)

• by returning the number of processes waiting for a semaphore value to
become greater than its current value (GETNCNT)

• by returning the number of processes waiting for a semaphore value to
equal zero (GETZCNT)

• by getting all semaphore values in a set and placing them in an array in
user memory (GETALL)

• by setting all semaphore values in a semaphore set from an array of
values in user memory (SETALL)

• by retrieving the data structure associated with a semaphore set
(1PC_STAT)

• by changing operation permissions for a semaphore set (I PC _SET)

• by removing a particular semaphore set identifier from the UNIX operat­
ing system along with its associated data structure and semaphore set
(1PC_RM1D)

See "Controlling Semaphores" for details of the semctl system call.

Getting Semaphores

This section describes how to use the semget system call. The accompanying
program illustrates its use.

Using semget
The synopsis found in the semget(2) entry in the Programmer's Reference Manual
is as follows:

Interprocess Communication 4-37

Semaphores

The following line in the synopsis:

int sernget (key, nserns, sernflg)

informs you that sernget is a function with three formal arguments that returns
an integer-type value. The next two lines:

key_t key;
int nserns, sernflg;

declare the types of the formal arguments. key_t is defined by a typedef in
the <sys/types . h> header file to be an integer.

The integer returned from this system call upon successful completion is the
semaphore set identifier that was discussed above.

The process calling the sernget system call must supply three actual arguments
to be passed to the formal key, nserns, and sernflg arguments.

A new sernid with an associated semaphore set and data structure is created if
either

• key is equal to IPC_PRIVATE,

or

• key is a unique integer and sernflg ANDed with IPC _ CREAT is "true."

The value passed to the sernflg argument must be an integer that will specify
the following:

• operation permissions

4-38 System Services and Application Packaging Tools

Semaphores

• control fields (commands)

Figure 4-6 reflects the numeric values <expressed in octal notation) for the valid
operation permissions codes.

Figure 4-6: Operation Permissions Codes

Operation Permissions
Read by User
Alter by User
Read by Group
Alter by Group
Read by Others
Alter by Others

Octal Value
00400
00200
00040
00020
00004
00002

A specific value is derived by adding or bitwise DRing the values for the opera­
tion permissions wanted. That is, if read by user and read/alter by others is
desired, the code value would be 00406 (00400 plus 00006). There are constants
Idefine'd in the <sys/sem.h> header file which can be used for the user
(OWNER). They are as follows:

SEM A 0200 /* alter permission by owner *1
SEM R 0400 /* read permission by owner */

Control flags are predefined constants (represented by all uppercase letters).
The flags that apply to the semget system call are IPC _ CREAT and IPC _ EXCL
and are defined in the <sys/ ipc . h> header file.

The value for semflg is, therefore, a combination of operation permissions and
control commands. After determining the value for the operation permissions
as previously described, the desired flag(s) can be specified. This specification is
accomplished by adding or bitwise DRing (I) them with the operation permis­
sions; the bit positions and values for the control commands in relation to those
of the operation permissions make this possible.

The semflg value can easily be set by using the flag names in conjunction with
the octal operation permissions value:

Interprocess Communication 4-39

Semaphores

semid - semqet (key, nsems, (IPC_CREAT

semid - semget (key, nsems, (IPC_CREAT

0400»;

IPC EXCL I 0400»;

As specified by the semqet(2) entry in the Programmer's Reference Manual, suc­
cess or failure of this system call depends upon the actual argument values for
key, nsems, and semflq, and system-tunable parameters. The system call will
attempt to return a new semaphore set identifier if one of the following condi­
tions is true:

• key is equal to IPC_PRIVATE

• key does not already have a semaphore set identifier associated with it
and (semflq &: IPC_CREAT) is "true" (not zero).

The key argument can be set to IPC_PRIVATE like this:

semid = semqet(IPC_PRIVATE, nsems, semflq);

Exceeding the SEMMNI, SEMMNS, or SEMMSL system-tunable parameters will
always cause a failure. The SEMMNI system-tunable parameter determines the
maximum number of unique semaphore sets (semid's) that may be in use at
any given time. The SEMMNS system-tunable parameter determines the max­
imum number of semaphores in all semaphore sets system wide. The SEMMSL
system-tunable parameter determines the maximum number of semaphores in
each semaphore set.

IPC_EXCL is another control command used in conjunction with IPC_CREAT.
It will cause the system call to return an error if a semaphore set identifier
already exists for the specified key provided. This is necessary to prevent the
process from thinking that it has received a new (unique) identifier when it has
not. In other words, when both IPC_CREAT and IPC_EXCL are specified, a
new semaphore set identifier is returned if the system call is successful. Any
value for semflq returns a new identifier if the key equals zero
(IPC_PRIVATE) and no system- tunable parameters are exceeded.

Refer to the semqet(2) manual page in the Programmer's Reference Manual for
specific associated data structure initialization for successful completion. The
specific failure conditions and their error names are contained there also.

System Services and Application Packaging Tools

Semaphores

Example Program
Figure 4-7 is a menu-driven program. It allows all possible combinations of
using the semqet system call to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are
pointed out.

This program begins (lines 4-8) by including the required header files as
specified by the semqet(2) entry in the Programmer's Reference Manual. Note
that the <sys/ errno. h> header file is included as opposed to declaring errno
as an external variable; either method will work.

Variable names have been chosen to be as close as possible to those in the
synopsis. Their declarations are self explanatory. These names make the pro­
gram more readable and are perfectly legal since they are local to the program.
The variables declared for this program and what they are used for are as fol­
lows:

key

opperm

flags

opperm_flags

semid

used to pass the value for the desired key

used to store the desired operation permissions

used to store the desired control commands (flags)

used to store the combination from the logical ORing of the
opperm and flags variables; it is then used in the system
call to pass the semflg argument

used for returning the semaphore set identification number
for a successful system call or the error code (-1) for an
unsuccessful one.

The program begins by prompting for a hexadecimal key, an octal operation
permissions code, and the control command combinations (flags) which are
selected from a menu (lines 15-32). All possible combinations are allowed even
though they might not be viable. This allows observing the errors for illegal
combinations.

Next, the menu selection for the flags is combined with the operation permis­
sions; the result is stored in opperm_flags (lines 36-52).

4-41

Semaphores

Then, the number of semaphores for the set is requested (lines 53-57); its value
i~ stored in nsems.

The system call is made next; the result is stored in the semid (lines 60, 61).

Since the semid variable now contains a valid semaphore set identifier or the
error code (-1), it is tested to see if an error occurred (line 63). If semid equals
-1, a message indicates that an error resulted and the external errno variable is
displayed (line 65). Remember that the external errno variable is only set
when a system call fails; it should only be examined immediately following sys­
tem calls.

If no error occurred, the returned semaphore set identifier is displayed (line 69).

The example program for the semget system call follows. We suggest that you
name the source program file semget . c and the executable file semget.

Figure 4-7: seuqet System can Example

4-42 System Services and Application Packaging Tools

Semaphores

Figure 4-7: semg-et System Call Example (continued)

Interprocess Communication 4-43

Semaphores

Figure 4-7: semqet System Call Example (continued)

Controlling Semaphores

This section describes how to use the sernetl system call. The accompanying
program illustrates its use.

Using semctl
The synopsis found in the sernetl(2) entry in the Programmer's Reference Manual
is as follows:

4-44 System Services and Application Packaging Tools

Semaphores

The semetl system call requires four arguments to be passed to it, and it
returns an integer value.

The semid argument must be a valid, non-negative, integer value that has
already been created by using the semqet system call.

The semnum argument is used to select a semaphore by its number. This relates
to sequences of operations (atomically performed) on the set. When a set of
semaphores is created, the first semaphore is number 0, and the last semaphore
is numbered one less than the total in the set.

The emd argument can be replaced by one of the following values:

GETVAL return the value of a single semaphore within a semaphore
set

SETVAL

GETPID

GETNCNT

GETZCNT

set the value of a single semaphore within a semaphore set

return the PID of the process that performed the last opera­
tion on the semaphore within a semaphore set

return the number of processes waiting for the value of a
particular semaphore to become greater than its current
value

return the number of processes waiting for the value of a
particular semaphore to be equal to zero

tnterprocess Communication 4-45

Semaphores

GETALL

SETALL

IPC STAT

IPC SET

return the value for all semaphores in a semaphore set

set all semaphore values in a semaphore set

return the status information contained in the associated data
structure for the specified semid, and place it in the data
structure pointed to by the buf pointer in the user memory
area; arq. buf is the union member that contains pointer

for the specified semaphore set (semid), set the effective
user/group identification and operation permissions

remove the specified semaphore set (semid) along with its
associated data structure.

A process must have an effective user identification of OWNER/CREATOR or
sUperuser to perform an IPC_SET or IPC_RMID control command. Read/alter
permission is required as applicable for the other control commands.

The arq argument is used to pass the system call the appropriate union
member for the control command to be performed. For some of the control
commands, the arq argument is not required and is simply ignored.

• arq. val required: SETVAL

• arq. buf required: IPC _STAT, IPC _SET

• arq. array required: GETALL, SETALL

• arqignored:GETVAL, GETPID, GETNCNT, GETZCNT, IPC_RMID

The details of this system call are discussed in the following program. If you
need more information on the logic manipulations in this program, read "Using
semqet". It goes into more detail than would be practical to do for every sys­
tem call.

Example Program
Figure 4-8 is a menu-driven program. It allows all possible combinations of
using the semetl system call to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are
pointed out. ..

System Services and Application Packaging Tools

Semaphores

This program begins (lines 5-9) by including the required header files as
specified by the semctl(2) entry in the Programmer's Reference Manual. Note
that in this program errno is declared as an external variable, and therefore the
<sys/errno. h> header file does not have to be included.

Variable, structure, and union names have been chosen to be as close as possible
to those in the synopsis. Their declarations are self explanatory. These names
make the program more readable and are perfectly legal since they are local to
the program. Those declared for this program and what they are used for are
as follows:

semid ds

c

i

length

uid

gid

mode

retrn

semid

semnum

cmd

used to receive the specified semaphore set identifier's data
structure when an IPC _STAT control command is performed

used to receive the input values from the scanf function
(line 119) when performing a SETALL control command

used as a counter to increment through the union
arg. array when displaying the semaphore values for a
GETALL (lines 98-100) control command, and when initializ­
ing the arg. array when performing a SETALL (lines 117-
121) control command

used as a variable to test for the number of semaphores in a
set against the i counter variable (lines 98, 117)

used to store the IPC SET value for the user identification

used to store the IPC_SET value for the group identification

used to store the IPC_SET value for the operation permis­
sions ,

used to store the return value from the system call

used to store and pass the semaphore set identifier to the
system call

used to store and pass the semaphore number to the system
call

used to store the code for the desired control command so
that subsequent processing can be performed on it

"

Interprocess Communication 4·47

Semaphores

choice used to detennine which member (uid, qid, mode) for the
IPC_SET control command is to be changed

semvals [] used to store the set of semaphore values when getting
(GETALL) or initializing (SETALL)

arq. val used to pass the system call a value to set, or to store a value
returned from the system call, for a single semaphore (union
member)

arq . buf a pointer passed to the system call which locates the data
structure in the user memory area where the IPC _STAT con­
trol command is to place its return values, or where the
IPC_SET command gets the values to set (union member)

arq. array a pointer passed to the system call which locates the array in
the user memory where the GETALL control command is to
place its return values, or when the SETALL command gets
the values to set (union member)

Note that the semid_ds data structure in this program (line 14) uses the data
structure located in the <sys/sem. h> header file of the same name as a tem­
plate for its declaration.

Note that the semvals array is declared to have 25 elements (0 through 24).
This number corresponds to the maximum number of semaphores allowed per
set (SEMMSL), a system-tunable parameter.

Now that all of the required declarations have been presented for this program,
this is how it works.

First, the program prompts for a valid semaphore set identifier, which is stored
• in the semid variable (lines 24-26). This is required for all semctl system

calls.

Then, the code for the desired control command must be entered (lines 17-42),
and the code is stored in the cmd variable. The code is tested to determine the
control command for subsequent processing.

If theGETVAL control command is selected (code 1), a message prompting for a
semaphore number is displayed (lines 48, 49). When it is entered, it is stored in
the semnum variable (line 50). Then, the system call is performed, and the
semaphore value is displayed (lines 51.,54). Note that the arq argument is not
required in this case, and the system call will simply ignore it. If the system call

System Services and Application Packaging Tools

Semaphores

is successful, a message indicates this along with the semaphore set identifier
used (lines 197, 198); if the system call is unsuccessful, an error message is
displayed along with the value of the external errno variable (lines 194, 195).

If the SETVAL control command is selected (code 2), a message prompting for a
semaphore number is displayed (lines 55, 56). When it is entered, it is stored in
the semnum variable (line 57). Next, a message prompts for the value to which
the semaphore is to be set; it is stored as the arq. val member of the union
(lines 58, 59). Then, the system call is performed (lines 60,62). Depending
upon success or failure, the program returns the same messages as for GETVAL
above.

If the GETPID control command is selected (code 3), the system call is made
immediately since all required arguments are known (lines 63-66), and the PID
of the process performing the last operation is displayed. Note that the arq
argument is not required in this case, and the system call will simply ignore it.
Depending upon success or failure, the program returns the same messages as
for GETVAL above.

If the GETNCNT control command is selected (code 4), a message prompting for
a semaphore number is displayed (lines 67-71). When entered, it is stored in the
semnum variable (line 73). Then, the system call is performed and the number
of processes waiting for the semaphore to become greater than its current value
is displayed (lines 73-76). Note that the arq argument is not required in this
case, and the system call will simply ignore it. Depending upon success or
failure, the program returns the same messages as for GETVAL above.

If the GETZCNT control command is selected (code 5), a message prompting for
a semaphore number is displayed (lines 77-80). When it is entered, it is stored
in the semnum variable (line 81). Then the system call is performed and the
number of processes waiting for the semaphore value to become equal to zero is
displayed (lines 82-85). Depending upon success or failure, the program returns
the same messages as for GETVAL above.

If the GETALL control command is selected (code 6), the program first performs
an IPC _STAT control command to determine the number of semaphores in the
set (lines 87-93). The length variable is set to the number of semaphores in the
set (line 93). The arq. array union member is set to point to the semvals
array where the system call is to store the values of the semaphore set (line %).
Now, a loop is entered which displays each element of the arq. array from
zero to one less than the value of length (lines 98-104). The semaphores in the

Interprocess Communication 4-49

Semaphores

set are displayed on a single line, separated by a space. Depending upon suc­
cess or failure, the program returns the same messages as for GETVAL above.

If the SETALL control command is selected (code 7), the program first performs
an IPC _STAT control command to determine the number of semaphores in the
set (lines 107-110). The length variable is set to the number of semaphores in
the set (line 113). Next, the program prompts for the values to be set and enters
a loop which takes values from the keyboard and initializes the semvals array
to contain the desired values of the semaphore set (lines 115-121). The loop
puts the first entry into the array position for semaphore number zero and ends
when the semaphore number that is filled in the array equals one less than the
value of length. The arq. array union member is set to point to the semvals
array from which the system call is to obtain the semaphore values. The system
call is then made (lines 122-125). Depending upon success or failure, the pro­
gram returns the same messages as for GETVAL above.

If the IPC_STAT control command is selected (code 8), the system call is per­
formed (line 129), and the status information returned is printed out (lines 130-
141); only the members that can be set are printed out in this program. Note
that if the system call is unsuccessful, the status information of the last success­
ful one is printed out. In addition, an error message is displayed, and the
errno variable is printed out (line 194).

If the IPC _SET control command is selected (code 9), the program gets the
current status information for the semaphore set identifier specified (lines 145-
149). This is necessary because this example program provides for changing
only one member at a time, and the semctl system call changes all of them.
Also, if an invalid value happened to be stored in the user memory area for one
of these members, it would cause repetitive failures for this control command
until corrected. The next thing the program does is to prompt for a code
corresponding to the member to be changed (lines 150-156). This code is stored
in the choice variable (line 157). Now, depending upon the member picked,
the program prompts for the new value (lines 158-181). The value is placed into
the appropriate member in the user memory area data structure, and the system
call is made (line 184). Depending upon success or failure, the program returns
the same messages as for GETVAL above.

If the IPC_RMID control command (code 10) is selected, the system call is per­
formed (lines 186-188). The semaphore set identifier along with its associated
data structure and semaphore set is removed from the UNIX operating system.
Depending upon success or failure, the program returns the same messages as
for the other control commands.

4-50 System Services and Application Packaging Tools

Semaphores

The example program for the semetl system call follows. We suggest that you
name the source program file semetl. e and the executable file semet!.

Figure 4-8: senctl System can Example

Interproct" Communication 4-51

Semaphores

Figure 4-8: seuctl System can Example (continued)

4-52 System Services and Application Packaging Tools

Semaphores

Figure 4-8: senctl System Call Example (continued)

Interprocess Communication 4·53

Semaphore.

Figure 4-8: sametl System call Example (continued)

System Services and Application Packaging Tools

Semaphores

Figure 4-8: sellCtl System call Example (continued)

Interproc8SS Communication 4-55

Semaphores

Operations on Semaphores

This section describes how to use the sernop system call. The accompanying
program illustrates its use.

Using semop
The synopsis found in the sernop(2) entry in the Programmer's Reference Manual
is as follows:

The sernop system call requires three arguments to be passed to it and returns
an integer value which will be zero for successful completion or -1 otherwise.

The sernid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the sernget system call.

The sops argument points to an array of structures in the user memory area
that contains the following for each semaphore to be changed:

• the semaphore number (sern_nurn)

• the operation to be performed (sern_op)

• the control flags (sern_flg)

The * sops declaration means that either an array name (which is the address of
the first element of the array) or a pointer to the array can be used. sernbuf is
the tag name of the data structure used as the template for the structure
members in the array; it is located in the <sys/ sern. h> header file.

4-56 System services and Application Packaging Tools

Semaphores

The nsops argument specifies the length of the array (the number of structures
in the array). The maximum size of this array is determined by the SEMOPM
system-tunable parameter. Therefore, a maximum of SEMOPM operations can be
performed for each semop system call.

The semaphore number (sem_num) determines the particular semaphore within
the set on which the operation is to be performed.

The operation to be performed is determined by the following:

• if sem_op is positive, the semaphore value is incremented by the value of
sem_op

• if sem _ op is negative, the semaphore value is decremented by the abso­
lute value of sem_op

• if sem_op is zero, the semaphore value is tested for equality to zero

The following operation commands (flags) can be used:

• IPC_NOWAIT-this operation command can be set for any operations in
the array. The system call will return unsuccessfully without changing
any semaphore values at all if any operation for which IPC _ NOWAIT is set
cannot be performed successfully. The system call will be unsuccessful
when trying to decrement a semaphore more than its current value, or
when testing for a semaphore to be equal to zero when it is not.

• SEM_UNDo-this operation command is used to tell the system to undo
the process's semaphore changes automatically when the process exits; it
allows processes to avoid deadlock problems. To implement this feature,
the system maintains a table with an entry for every process in the sys­
tem. Each entry points to a set of undo structures, one for each semaphore
used by the process. The system records the net change.

Example Program
Figure 4-9 is a menu-driven program. It allows all possible combinations of
using the semop system call to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are
pointed out.

Interprocess Communication 4-57

Semaphores

This program begins (lines 5-9) by including the required header files as
specified by the shmop(2) entry in the Programmer's Reference Manual. Note that
in this program errno is declared as an external variable; therefore, the
<sys/errno. h> header file does not have to be included.

Variable and structure names have been chosen to be as close as possible to
those in the synopsis. Their declarations are self explanatory. These names
make the program more readable and are perfectly legal since the declarations
are local to the program. The variables.declared for this program and what
they are used for are as follows: \

sembuf[10] used as an array buffer (line 14) to contain a maximum of ten
sembuf type structures; ten is the standard value of the tun­
able parameter SEMOPM, the maximum number of operations
on a semaphore set for each semop system call

sops used as a pointer (line 14) to the sembufarray for the sys­
tem call and for accessing the structure members within the
array

string[8]

rtrn

flags

i

semid

nsops

used as a character buffer to hold a number entered by the
user

used to store the return value from the system call

used to store the code of the IPC_NOWAIT or SEM_UNDO
flags for the semop system call (line 59)

used to store the semaphore number entered by the user for
each semaphore operation in the array

used as a counter (line 31) for initializing the structure
members in the array, and used to print out each structure in
the array (line 78)

used to store the desired semaphore set identifier for the sys­
tem call

used to specify the number of semaphore operations for the
system call; must be less than or equal to SEMOPM

First, the program prompts for a semaphore set identifier that the system call is
to perform operations on (lines 18-21). semid is stored in the semid variable
(line 22).

4-58 System Services and Application Packaging Tools

Semaphores

A message is displayed requesting the number of operations to be performed on
this set (lines 24-26). The number of operations is stored in the nsops variable
(line 27).

Next, a loop is entered to initialize the array of structures (lines 29-76). The
semaphore number, operation, and operation command (flags) are entered for
each structure in the array. The number of structures equals the number of
semaphore operations (nsops) to be performed for the system call, so nsops is
tested against the i counter for loop control. Note that sops is used as a
pointer to each element (structure) in the array, and sops is incremented just
like i. sops is then used to point to each member in the structure for setting
them.

After the array is initialized, all of its elements are printed out for feedback
(lines 77-84).

The sops pointer is set to the address of the array (lines 85, 86). sembuf could
be used directly, if desired, instead of sops in the system call.

The system call is made (line 88), and depending upon success or failure, a
corresponding message is displayed. The results of the operation(s) can be
viewed by using the sernetl GETALL control command.

The example program for the sernop system call follows. We suggest that you
name the source program file sernop. e and the executable file sernop.

Interprocess Communication 4-59

Semaphores

Figure 4·9: setOOp System Call Example

4-60 System Services and Application Packaging Tools

Semaphores

Figure 4-9: setlDp System Call Example (continued)

Interprocess Communication 4-61

Semaphore.

Figure 4·9: SemJP System can Example (continued)

4-62 System Services and Application Packaging Tools

Shared Memory

The shared memory type of IPC allows two or more processes (executing pro­
grams) to share memory and, consequently, the data contained there. This is
done by allowing processes to set up access to a common virtual memory
address space. This sharing occurs on a segment basis, which is memory
management hardwilre-<iependent.

This sharing of memory provides the fastest means of exchanging data between
processes. However, proCesses that reference a shared memory segment must
reside on one processor. Consequently, processes running. on different proces­
sors (such as in an Remote. File Sharing (RFS) network or a multiprocessing
environment) may not be able to use shared memory segments.

A process initially creates a shared me~ory segment facilitY using the shmqet
system call. Upon creation, this process sets the overall operation permissions
for the shared memory segment facility, sets its size in bytes, and can specify
that the shared memory segment is for reference only (read-only) upon attach­
ment. If the memory segment is not specified to be for reference only, all other
processes with appropriate operation permissions can read from or write to the
memory segment.

shmat (shared memory attach) and shmdt (shared memory detach) can be per­
formed on a shared memory segment.

shmat allows processes to associate themselves with the shared memory seg­
me~t jf they have permission. They can then read or write as allowed.

shmdt allows processes to disassociate themselves from a shared memory seg­
ment. Therefore, they lose the ability to read from or write to the shared
memory segment.

The ori~l owner / cr~ator of a shared memory segm~nt can relinquish owner­
ship to another proCess using theshmotl system call. Howeve,r, the, creating
process remains the creator until the facility is removed or the system is reini­
tialized. Other processes with permission can perform other functions on the
shared memory segment using the shmctl system call.

Interprocess Communication 4-63

Shared Memory

System calls (documented in the Programmer's Reference Manual) make these
shared memory capabilities available to processes. The calling process passes
arguments to a system call, and the system call either successfully or unsuccess­
fully performs its function. If the system call is successful, it performs its func­
tion and returns the appropriate information. Otherwise, a known error code
(-1) is returned to the process, and the external variable errno is set accord­
ingly.

Using Shared Memory

Sharing memory between processes occurs on a virtual segment basis. There is
only one copy of each individual shared memory segment existing in the UNIX
operating system at any point in time.

Before sharing of memory can be realized, a uniquely identified shared memory
segment and data structure must be created. The unique identifier created is
called the shared memory identifier (shmid); it is used to identify or refer to the
associated data structure. The data structure includes the following for each
shared memory segment:

• operation permissions

• segment size

• segment descriptor (for internal system use only)

• PID performing last operation

• PID of creator

• current number of processes attached

• last attach time

• last detach time

• last change time

The C programming language data structure definition for the shared memory
segment data structure is located in the <sys/shm. h> header file. It is as fol­
lows:

4-64 SY$tem Servlen and ApplicatIon PackagIng Tool$

Shared Memory

Note that the shmyerm member of this structure uses ipcyerm as a tem­
plate.

The ipc yerm data structure is the same for all IPe facilities; is it located in the
<sys/ipc.h> header file and shown in Figure 4-1.

The shmget system call performs two tasks:

• it gets a new shared memory identifier and creates an associated shared
memory segment data structure for it

• it returns an existing shared memory identifier that already has an associ­
ated shared memory segment data structure

The task performed is determined by the value of the key argument passed to
the shmget system call. For the first task, if the key is not already in use for
an existing shared memory identifier and the IPC_CREAT flag is set in shmflg,
a new identifier is returned with an associated shared memory segment data
structure created for it provided no system-tunable parameters would be
exceeded.

Interprocess Communication 4-65

Shared Memory

There is also a provision for specifying a key of value zero which is known as
the private key (IPC _PRIVATE); when specified, a new shmid is always
returned with an associated shared memory segment data structure created for
it unless a system-tunable parameter would be exceeded. The ipcs command
will show the key field for the shmid as all zeros.

For the second task, if a shmid exists for the key specified, the value of the
existing shmid is returned. If it is not desired to have an existing shmid
returned, a control command (IPC_EXCL) can be specified (set) in the shmflg
argument passed to the system call. "Using shmget" discusses how to use this
system call.

When performing the first task, the process that calls shmget becomes the
owner/creator, and the associated data structure is initialized accordingly.
Remember, ownership can be changed, but the creating process always remains
the creator (see "Controlling Shared Memory"). The creator of the shared
memory segment also determines the initial operation permissions for it.

Once a uniquely identified shared memory segment data structure is created,
shmop (shared memory segment operations) and shmctl (shared memory con­
trol) can be used.

Shared memory segment operations consist of attaching and detaching shared
memory segments. shmat and shmdt are provided for each of these opera­
tions (see "Operations for Shared Memory" for details on these system calls).

The shmctl system call permits you to control the shared memory facility in
the following ways:

• by retrieving the data structure associated with a shared memory segment
(IPC_STAT)

• by changing operation permissions for a shared memory segment
(IPC_SET)

• by removing a particular shared memory segment from the UNIX operat­
ing system along with its associated shared memory segment data struc­
ture (IPC_RMID)

• by locking a shared memory segment in memory (SHM_LOCK)

• by unlocking a shared memory segment (SHM_UNLOCK)

4-66 System Services and Application Packaging Tools

Shared Memory

See "Controlling Shared Memory" for details of the shmct 1 system call.

Getting Shared Memory Segments

This section describes how to use the shmget system call. The accompanying
program illustrates its use.

Using shmget

The synopsis found in the shmget(2) entry in the Programmer's Reference Manual
is as follows:

All of these include files are located in the /usr/include/sys directory of the
UNIX operating system. The following line in the synopsis:

int shmget (key, size, shmflg)

informs you that shmget is a function with three formal arguments that returns
an integer-type value. The next two lines:

key_t key;
int size, shmflg;

declare the types of the formal arguments. key_t is defined by a typedef in
the <sys/types. h> header file to be an integer.

The integer returned from this function (upon successful completion) is the
shared memory identifier (shmid) that was discussed earlier.

Interprocess Communication 4-67

Shared Memory

As declared, the process calling the shmget system call must supply three argu­
ments to be passed to the formal key, size, and shmflg arguments.

A new shmid with an associated shared memory data structure is provided if
either

• key is equal to IPC_PRIVATE,

or

• key is a unique integer and shmflg ANDed with IPC _ CREAT is "true"
(not zero).

The value passed to the shmflg argument must be an integer-type value and
will specify the following:

• operations permissions

• control fields (commands)

Access permissions determine the read/write attributes and modes determine
the user/group/other attributes of the shmflg argument. They are collectively
referred to as "operation permissions." Figure 4-10 reflects the numeric values
(expressed in octal notation) for the valid operation permissions codes.

Figure 4·10: Operation Permissions Codes

Operation Permissions
Read by User
Write by User
Read by Group
Write by Group
Read by Others
Write by Others

Octal Value
00400
00200
00040
00020
00004
00002

A specific octal value is derived by adding or bitwise ORing the octal values for
the operation permissions desired. That is, if read by user and read/write by
others is desired, the code value would be 00406 (00400 plus 00006). There are
constants located in the <sys/shm.h> header file which can be used for the
user (OWNER). They are:

4-68 System Services and Application Packaging Tools

Shared Memory

SHM R 0400
SHM W 0200

Control flags are predefined constants (represented by all uppercase letters).
The flags that apply to the shmqet system call are IPC _ CREAT and IPC _ EXCL
and are defined in the <sys/ ipc. h> header file.

The value for shmflg is, therefore, a combination of operation permissions and
control commands. After determining the value for the operation permissions
as previously described, the desired flag(s) can be specified. This is accom­
plished by adding or bitwise ORing (I) them with the operation permissions;
the bit positions and values for the control commands in relation to those of the
operation permissions make this possible.

The shmflq value can easily be set by using the names of the flags in conjunc­
tion with the octal operation permissions value:

shmid shmqet (key, size, (IPC_CREAT 0400»;

shmid shmqet (key, size, (IPC_CREAT IPC EXCL I 0400»;

As specified by the shmqet(2) entry in the Programmer's Reference Manual, suc­
cess or failure of this system call depends upon the argument values for key,
size, and shmflq, and system-tunable parameters. The system call will
attempt to return a new shmid if one of the following conditions is true:

• key is equal to IPC_PRIVATE .

• key does not already have a shmid associated with it and (shmflq &
IPC _ CREAT) is "true" (not zero).

The key argument can be set to IPC_PRIVATE like this:

shmid - shmqet(IPC_PRIVATE, size, shmflq);

The SHMMNI system-tunable parameter detennines the maximum number of
unique shared memory segments (shmids) that may be in use at any given
time. If the maximum number of shared memory segments is already in use, an
attempt to create an additional segment will fail.

IPC _ EXCL is another control command used in conjunction with IPC _ CREAT .

It will cause the system call to retrieve an error if a shared memory identifier
exists for the specified key provided. This is necessary to prevent the process

Interprocess Communication 4-69

Shared Memory

from thinking that it has received a new (unique) shmid when it has not. In
other words, when both PC_CREAT and IPC_EXCL are specified, a unique
shared memory identifier is returned if the system call is successful. Any value
for shmflg returns a new identifier if the key equals zero (IPC_PRIVATE) and
no system-tunable parameters are exceeded.

The system call will fail if the value for the size argument is less than SHMMIN
or greater than SHMMAX. These tunable parameters specify the minimum and
maximum shared memory segment sizes.

Refer to the shmget(2) manual page in the Programmer's Reference Manual for
Specific associated data structure initialization for successful completion. The
specific failure conditions and their error names are contained there also.

Example Program
Figure 4-11 is a menu-driven program. It allows all possible combinations of
using the shmget system call to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are
pointed out.

This program begins (lines 4-7) by including the reqUired header files as
specified by the shmget(2) entry in the Programmer's Reference Manual. Note
that the <sys/errno. h> header file is included as opposed to declaring errno
as an external variable; either method will work.

Variable names have been chosen to be as close as possible to those in the
synopsis for the system call. Their declarations are self explanatory. These
names make the program more readable and are perfectly legal since they are
local to the program. The variables declared for this program and what they
are used for are as follows:

key

opperm

flags

shmid

4-70

used to pass the value for the desired key

used to store the desired operation permissions

used to store the desired control commands (flags)

used for returning the message queue identification
number for a successful system call or the error code (-1)
for an unsuccessful one

System Services and Application Packaging Tools

Shared Memory

size used to specify the shared memory segment size

opperm_flags used to store the combination from the logical ORing of
the opperm and flags variables; it is then used in the
system call to pass the shmflg argument

The program begins by prompting for a hexadecimal key, an octal operation
permissions code, and finally for the control command combinations (flags)
which are selected from a menu (lines 14-31). All possible combinations are
allowed even though they might not be viable. This allows observing the errors
for illegal combinations.

Next, the menu selection for the flags is combined with the operation permis­
sions; the result is stored in the opperm_flags variable (lines 35-50).

A display then prompts for the size of the shared memory segment; it is stored
in the size variable (lines 51-54).

The system call is made next; the result is stored in the shmid variable (line 56).

Since the shmid variable now contains a valid message queue identifier or the
error code (-1), it is tested to see if an error occurred (line 58). If shmid equals
-1, a message indicates that an error resulted and the external errno variable is
displayed (line 60).

If no error occurred, the returned shared memory segment identifier is
displayed (line 64).

The example program for the shmget system call follows. We suggest that you
name the source program file shmget . c and the executable file shmget.

InterprOC9SS Communication 4-71

Shared Memory

Figure 4-11: shmget System Call Example

4-72 System Services and Application Packaging Tools

Shared Memory

Figure 4-11: shrlget System Call Example (continued)

Controlling Shared Memory

This section describes how to use the shmctl system call. The accompanying
program illustrates its use.

Interprocess Communication 4-73

Shared Memory

Using shmctl
The synopsis found in the shmctl(2) entry in the Programmer's Reference Manual
is as follows:

The shmctl system call requires three arguments to be passed to it. It returns
an integer value which will be zero for successful completion or -1 otherwise.

The shmid variable must be a valid, non-negative, integer value. In other
words, it must have already been created by using the shmqet system call.

The cmd argument can be replaced by one of following values:

IE'C STAT return the status information contained in the associated data
structure for the specified shmid and place it in the data
structure pointed to by the buf pointer in the user memory
area

IE'C SET

IE'C RMID

SHM LOCK

SHM LOCK

for the specified shmid, set the effective user and group
identification, and operation permissions

remove the specified shmid with its associated shared
memory segment data structure

lock the specified shared memory segment in memory; must
be superuser to perform this operation

lock the shared memory segment from memory; must be
superuser to perform this operation

A process must have an effective user identification of OWNER/CREATOR or
superuser to perform an IE'C _SET or IE'C _ RMID control command. Only the
superuser can perform a SHM_LOCK or SHM_UNLOCK control command. A pro­
cess must have read permission to perform the IE'C _STAT control command.

4·74 System Services and Application Packaging Tools

Shared Memory

The details of this system call are discussed in the example program. If you
need more information on the logic manipulations in this program, read "Using
shmget". It goes into more detail than what would be practical for every sys­
tem call.

Example Program
Figure 4-12 is a menu-driven program. It allows all possible combinations of
using the shmctl system call to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are
pointed out.

This program begins (lines 5-9) by including the required header files as
specified by the shmctl(2) entry in the Programmer's Reference Manual. Note
that in this program errno is declared as an external variable, and therefore,
the <sys!errno. h> header file does not have to be included.

Variable and structure names have been chosen to be as close as possible to
those in the synopsis for the system call. Their declarations are self explanatory.
These names make the program more readable and are perfectly legal since they
are local to the program. The variables declared for this program and what
they are used for are as follows:

uid

gid

mode

rtrn

shmid

command

choice

used to store the IPC SET value for the user identification

used to store the IPC _SET value for the group identification

used to store the IPC _SET value for the operation permis­
sions

used to store the return integer value from the system call

used to store and pass the shared memory segment identifier
to the system call

used to store the code for the desired control command so
that subsequent processing can be performed on it

used to determine which member for the IPC SET control
command is to be changed

Interprocess Communication 4-75

Shared Memory

shmid ds

buf

used to receive the specified shared memory segment
identifier's data structure when an IPC STAT control com­
mand is performed

a pointer passed to the system call which locates the data
structure in the user memory area where the IPC_STAT con­
trol command is to place its return values or where the
IPC_SET command gets the values to set.

Note that the shmid_ds data structure in this program (line 16) uses the data
structure of the same name located in the <sys/shm. h> header file as a tem­
plate for its declaration.

The next important thing to observe is that although the buf pointer is declared
to be a pointer to a data structure of the shmid_ds type, it must also be initial­
ized to contain the address of the user memory area data structure (line 17).

Now that all of the required declarations have been explained for this program,
this is how it works.

First, the program prompts for a valid shared memory segment identifier which
is stored in the shmid variable (lines 18-20). This is required for every shmctl
system call.

Then, the code for the desired control command must be entered (lines 21-29); it
is stored in the command variable. The code is tested to determine the control
command for subsequent processing.

If the IPC_STAT control command is selected (code 1), the system call is per­
fonned (lines 39, 40) and the status information returned is printed out (lines
41-71). Note that if the system call is unsuccessful (line 139), the status informa­
tion of the last successful call is printed out. In addition, an error message is
displayed and the errno variable is printed out (lines 141). If the system call is
successful, a message indicates this along with the shared memory segment
identifier used (lines 143-147).

If the HC_SET control command is selected (code 2), the first thing done is to
get the current status infonnation for the shared memory identifier specified
(lines 88-90). This is necessary because this example program provides for
changing only one member at a time, and the system call changes all of them.
Also, if an invalid value happened to be stored in the user memory area for one
of these members, it would cause repetitive failures for this control command
until corrected. The next thing the program does is to prompt for a code

4-76 System Services and Application Packaging Tools

Shared Memory

corresponding to the member to be changed (lines 91-96). This code is stored in
the choice variable (line 97). Now, depending upon the member picked, the
program prompts for the new value (lines 98-120). The value is placed in the
appropriate member in the user memory area data structure, and the system call
is made (lines 121-128). Depending upon success or failure, the program returns
the same messages as for IPC _STAT above.

If the IPC_RMID control command (code 3) is selected, the system call is per­
formed (lines 125-128), and the shmid along with its associated message queue
and data structure are removed from the UNIX operating system. Note that the
buf pointer is ignored in performing this control command and its value can be
zero or NULL. Depending upon the success or failure, the program returns the
same messages as for the other control commands.

If the SHM_LOCK control command (code 4) is selected, the system call is per­
formed (lines 130,131). Depending upon the success or failure, the program
returns the same messages as for the other control commands.

If the SHM_UNLOCK control command (code 5) is selected, the system call is per­
formed (lines 133-135). Depending upon the success or failure, the program
returns the same messages as for the other control commands.

The example program for the shmctl system call follows. We suggest that you
name the source program file shmctl. c and the executable file shmctl.

InterprOC8SS Co,mmunlcatlon 4-77

Shared Memory

Figure 4-12: shJlctl System call Example

4-78 System Services and Application Packaging Tools

Shared Memory

Figure 4-12: shm::tl System Call Example (continued)

Interprocess Communication 4·79

Shared Memory

Figure 4-12: shm:::tl System Call Example (continued)

4-80 System Services and Application Packaging Tools

Shared Memory

Figure 4·12: shnetl System Call Example (continued)

Operations for Shared Memory

This section describes how to use the shmat and shmdt system calls. The
accompanying program illustrates their use.

Using shmop

The synopsis found in the shmop(2) entry in the Programmer's Reference Manual
is as follows:

Interprocess Communication 4·81

Shared Memory

Attaching a Shared Memory Segment

The shmat system call requires three arguments to be passed to it. It returns a
character pointer value. Upon successful completion, this value will be the
address in memory where the process is attached to the shared memory seg­
ment and when unsuccessful the value will be -1.

The shmid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the shmget system call.

The shmaddr argument can be zero or user supplied when passed to the
shmat system call. If it is zero, the UNIX operating system picks the address
where the shared memory segment will be attached. If it is user supplied, the
address must be a valid address that the UNIX operating system would pick.
The following illustrates some typical address ranges.

OxcOOcOOOO
OxcOOeOOOO
OxcOl00000
Oxc0120000

Note that these addresses are in chunks of 20,000 hexadecimal. It would be
wise to let the operating system pick addresses so as to improve portability.

The shmflg aFgUment is used to pass the SHM_RND and SHM_RDONLY flags to
the shmat system call.

4-82 System Services and Application Packaging Tools

Shared Memory

Detaching Shared Memory Segments
The shmdt system call requires one argument to be passed to it. It returns an
integer value which will be zero for successful completion or -1 otherwise.

Further details on shmat and shmdt are discussed in the example program. If
you need more information on the logic manipulations in this program, read
"Using shmget". It goes into more detail than would be practical to do for
every system call.

Example Program
Figure 4-13 is a menu-driven program. It allows all possible combinations of
using the shmat and shmdt system calls to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are
pointed out.

This program begins (lines 5-9) by including the required header files as
specified by the shmop(2) entry in the Programmer's Reference Manual. Note that
in this program errno is declared as an external variable; therefore, the
<sys/ errno. h> header file does not have to be included.

Variable and structure names have been chosen to be as close as possible to
those in the synopsis. Their declarations are self explanatory. These names
make the program more readable and are perfectly legal since they are local to
the program The variables declared for this program and what they are used
for are as follows:

addr

laddr

flags

i

used to store the address of the shared memory segment for
the shmat and shmdt system calls and to ,eceive the return
value from the shmat system call

used to store the desired attach/detach address entered by
the user

used to store the codes of the SHM_RND or SHM_RDONLY flags
for the shmat system call

used as a loop counter for attaching and detaching

Interprocess Communication 4-83

Shared Memory

attach

shmid

shmflg

retrn

detach

used to store the desired number of attach operations

used to store and pass the desired shared memory segment
identifier

used to pass the value of flags to the shmat system call

used to store the return values from the shmdt system call

used to store the desired number of detach operations

This example program combines both the shmat and shmdt system calls. The
program prompts for the number of attachments and enters a loop until they
are done for the specified shared memory identifiers. Then, the program
prompts for the number of detachments to be performed and enters a loop until
they are done for the specified shared memory segment addresses.

shmat

The program prompts for the number of attachments to be performed, and the
value is stored at the address of the attach variable (lines 19-23).

A loop is entered using the attach variable and the i counter (lines 23-72) to
perform the specified number of attachments.

In this loop, the program prompts for a shared memory segment identifier (lines
26-29); it is stored in the shmid variable (line 30). Next, the program prompts
for the address where the segment is to be attached (lines 32-36); it is stored in
the laddr variable (line 37) and converted to a pointer (line 39). Then, the pro­
gram prompts for the desired flags to be used for the attachment (lines 40-47),
and the code representing the flags is stored in the flags variable (line 48).
The flags variable is tested to determine the code to be stored for the shmflg
variable used to pass them to the shmat system call (lines 49-60). The system
call is executed (line 63). If successful, a message stating so is displayed along
with the attach address (lines 68-70). If unsuccessful, a message stating so is
displayed and the error code is displayed (line 65). The loop then continues
until it finishes.

shmdt

After the attach loop completes, the program prompts for the number of detach
operations to be performed (lines 73-77) and the value is stored in the detach
variable (line 76).

4-84 System Services and Application Packaging Tools

Shared Memory

A loop is entered using the detach variable and the i counter (lines 80-98) to
perform the specified number of detachments.

In this loop, the program prompts for the address of the shared memory seg­
ment to be detached (lines 81-85); it is stored in the laddr variable (line 86) and
converted to a pointer (line 88). Then, the shmdt system call is performed (line
89). If successful, a message stating so is displayed along with the address that
the segment was detached from (lines 95, 96). If unsuccessful, the error number
is displayed (line 92). The loop continues until it finishes.

The example program for the shmop system calls follows. We suggest that you
name the source program file shmop. c and the executable file shmop.

Figure 4-13: shm:lp System Call Example

Interprocess Communication

Shared Memory

Figure 4-13: sluoop System Call Example (continued)

4·86 System Services and Application Packaging Tools

Shared Memory

Figure 4-13: slm>p System call Example (continued)

Interprocess Communication 4-87

5 Process Scheduler

Introduction 5-1

Overview of the Process Scheduler 5-3
Time-Sharing Class 5-4
System Class 5-5
Real-Time Class 5-5

Commands and Function Calls 5-6
The priocntl command 5-9
The priocntl system call 5-13

• PC GETCID, PC GETCLINFO 5-15
• PC = GETPARMS;-PC _ SETPARMS 5-19

The priocntlset system call 5-25

Interaction with Other Functions 5-28
Kernel Processes 5-28
fork, exec 5-28
~~ 5~

init 5-29

Performance 5-30
Process State Transition 5-30
Software latencies 5-33
Primary Memory for Real-Time U-Blocks 5-34

Table of Contents

Introduction

The UNIX system scheduler detennines when processes run. It maintains pro­
cess priorities based on configuration parameters, process behavior, and user
requests; it uses these priorities to assign processes to the cPU.

System V Release 4 gives users absolute control over the order in which certain
processes run and the amount of time each process may use the cPU before
another process gets a chance.

By default, the Release 4 scheduler uses a time-sharing policy like the policy
used in previous releases. A time-sharing policy adjusts process priorities
dynamically in an attempt to provide good response time to interactive
processes and good throughput to processes that use a lot of cPU time.

The System V Release 4 scheduler offers a real-time scheduling policy as well as
a time-sharing policy. Real-time scheduling allows users to set fixed priorities
on a per-process basis. The highest-priority real-time user process always gets
the CPU as soon as it is runnable, even if system processes are runnable. An
application can therefore specify the exact order in which processes run. An
application may also be written so that its real-time processes have a guaranteed
response time from the system.

For most UNIX environments, the default scheduler configuration works well
and no real-time processes are needed: administrators should not change
configuration parameters and users should not change scheduler properties of
their processes. However, when the requirements for an application include
strict timing constraints, real-time processes sometimes provide the only way to
satisfy those constraints ..

Real-time processes used carelessly can have a dramatic negative effect on
the performance of time-sharing processes.

This chapter is addressed to programmers who need more control over order of
process execution than they get using default scheduler parameters.

Because changes in scheduler administration can affect scheduler behavior, pro­
grammers may also need to know something about scheduler administration.
For administrative information on the scheduler, see the System Administrator's
Guide. There are also a few reference manual entries with information on
scheduler administration:

Process Scheduler 5-1

Introduction

• dispadmin(1M) tells how to change scheduler configuration in a running
system.

• ts_dptbl(4) and rt_dptb1(4) describe the time-sharing and real-time
parameter tables that are used to configure the scheduler.

The rest of this chapter is organized as follows:

5·2

• The "Overview of the Process Scheduler" tells what the scheduler does
and how it does it. It also introduces scheduler classes.

• The "Commands and Function Calls" section describes and gives exam­
ples of the priocntl(1) coriurtand and the priocntl(2) and
priocntlset (2) system calls, the user interface to scheduler services. The
priocntl functions allow you to retrieve scheduler configuration infor­
mation and to get or set scheduler parameters for a process or a set of
processes.

• ''Interaction with Other Functions" describes the interactions between the
scheduler and related functions.

• The "Performance" section discusses scheduler latencies that some appli­
cations must be aware of and mentions some considerations other than
the scheduler that application deSigners must take into account to ensure
that their requirements are met.

System Services and Application Packaging Tools

Overview of the Process Scheduler

The following figure shows how the System V Release 4 process scheduler
works:

Figure 5-1: The ~n',m V Release 4 Process Scheduler

Global
Priority

5<:heduling Class-Specific 5<:heduler Process
Queues Order Priorities Classes

Highest First

Lowest Last

Real-Time
Priorities

System
Priorities

Time-Sharing
Priorities

Real-Time
Processes

Time-Sharing
ProceSses

When a process is created, it inherits its scheduler parameters, including
scheduler class and a priority within that class. A process changes class only as
a result of a user request. The system manages the priority of a process based
on user requests and a policy associated with the scheduler class of the process.

In the default configuration, the initialization process belongs to the time­
sharing class. Because processes inherit their scheduler parameters, all user
login shells begin as time-sharing processes in the default configuration.

Process Scheduler 5-3

Overview of the Process Scheduler

The scheduler converts class-specific priorities into global priorities. The global
priority of a process determines when it runs-the scheduler always runs the
runnable process with highest global priority. Numerically higher priorities run
first. Once the scheduler assigns a process to the CPU, the process runs until it
uses up its time slice, sleeps, or is preempted by a higher-priority process.
Processes with the same priority run round-robin.

Administrators specify default time slices in the configuration tables, but users
may assign per-process time slices to real-time processes.

You can display the global priority of a process with the -01 options of the
ps(1) command. You can display configuration information about class-specific
priorities with the prioont1(1) command and the dispadmin(1M) command.

By default, all real-time processes have higher priorities than any kernel process,
and all kernel processes have higher priorities than any time-sharing process.

As long as there is a runnable real-time process, no kernel process and no
time-sharing process runs.

The following sections describe the scheduling policies of the three default
classes.

Time-Sharing Class

The goal of the time-sharing policy is to provide good response time to interac­
tive processes and good throughput to CPU-bound processes. The scheduler
switches CPU allocation frequently enough to provide good response time, but
not so frequently that it spends too much time doing the switching. Time slices
are typically on the order of a few hundred milliseconds.

The time-sharing policy changes priorities dynamically and assigns time slices of
different lengths. The scheduler raises the priority of a process that sleeps after
only a little CPU use (a process sleeps, for example, when it starts an I/O opera­
tion such as a terminal read or a disk read); frequent sleeps are characteristic of
interactive tasks such as editing and running simple shell commands. On the
other hand, the time-sharing policy lowers the priority of a process that uses the
CPU for long periods without sleeping.

5-4 System Services and Application Packaging Tools

Overview of the Process Scheduler

The default time-sharing policy gives larger time slices to processes with lower
priorities. A process with a low priority is likely to be CPU-bound. Other
processes get the CPU first, but when a low-priority process finally gets the CPU,
it gets a bigger chunk of time. If a higher-priority process becomes runnable
during a time slice, however, it preempts the running process.

The scheduler manages time-sharing processes using configurable parameters in
the time-sharing parameter table ts_dptbl. This table contains information
specific to the time-sharing class.

System Class

The system class uses a fixed-priority policy to run kernel processes such as
servers and housekeeping processes like the paging demon. The system class is
reserved for use by the kernel; users may neither add nor remove a process
from the system class. Priorities for system class processes are set up in the ker­
nel code for those processes; once established, the priorities of system processes
do not change. (User processes running in kernel mode are not in the system
class.)

Real-Time Class

The real-time class uses a fixed-priority scheduling policy so that critical
processes can run in predetermined order. Real-time priorities never change
except when a user requests a change. Contrast this fixed-priority policy with
the time-sharing policy, in which the system changes priorities in order to pro­
vide good interactive response time.

Privileged users can use the priocntl command or the priocntl system call to
assign real-time priorities.

The scheduler manages real-time processes using configurable parameters in the
real-time parameter table rt_dptbl. This table contains information specific to
the real-time class.

Process Scheduler 5·5

Commands and Function Calls

Here is a programmer's view of default process priorities:

Figure 5·2: Process Priorities (Programmer View)

Global
Priority

Highest

Lowest

Sche4uling Oass-Specific Scheduler
Order Priorities Classes

First

Last

RTmax o

o 0
o

+ TS max
o

- TS max

o
o

o

Real-Time
Class

System
Class

Time-Sharing
Class

From a user or programmer's point of view, a process priority has meaning
only in the context of a scheduler class. You specify a process priority by speci­
fying a class and a class-specific priority value. The class and class-specific
value are mapped by the system into a global priority that the system uses to
schedule processes .

5-6

• Real-time priorities run from zero to a configuration-dependent max­
imum. The system maps them directly into global priorities. They never
change except when a user changes them.

System Services and Application Packaging Tools

Commands and Function Calls

• System priorities are controlled entirely in the kernel. Users cannot affect
them.

• Time-sharing priorities have a user-controlled component (the "user prior­
ity") and a component controlled by the system. The system does not
change the user priority except as the result of a user request. The system
changes the system-controlled component dynamically on a per-process
basis in order to provide good overall system performance; users cannot
affect the system-controlled component. The scheduler combines these
two components to get the process global priority.

The user priority runs from the negative of a configuration-dependent
maximum to the positive of that maximum. A process inherits its user
priority. Zero is the default initial user priority.

The "user priority limit" is the configuration-dependent maximum value
of the user priority. You may set a user priority to any value below the
user priority limit. With appropriate permission, you may raise the user
priority limit. Zero is the default user priority limit.

You may lower the user priority of a process to give the process reduced
access to the CPU or, with the appropriate permission, raise the user prior­
ity to get better service. Because you cannot set the user priority above
the user priority limit, you must raise the user priority limit before you
raise the user priority if both have their default values of zero.

An administrator configures the maximum user priority independent of
global time-sharing priorities. In the default configuration, for example, a
user may set a user priority only in the range from -20 to +20, but 60
time-sharing global priorities are configured.

A system administrator's view of priorities is different from that of a user or
programmer. When configuring scheduler classes, an administrator deals
directly with global priorities. The system maps priorities supplied by users
into these global priorities. See the System Administrator's Guide.

The ps -eel command reports global priorities for all active processes. The
priocntl command reports the class-specific priorities that users and progra,m­
mers use.

Process Scheduler 5-7

Commands and Function Calls

Global process priorities and user-supplied priorities are in ascending order:
numerically higher priorities run first.

The priocntl(1) command and the priocntl(2) and priocntlset(2) system
calls set or retrieve scheduler parameters for processes. The basic idea for set­
ting priorities is the same for all three functions:

• Specify the target processes.

• Specify the scheduler parameters you want for those processes.

• Do the command or system call to set the parameters for the processes.

You specify the target processes using an ID type and an ID. The ID type tells
how to interpret the ID. [This concept of a set of processes applies to signals as
well as to the scheduler; see sigsend(2).] The following table lists the valid ID
types that you may specify.

priocntl ID types

process ID
parent process ID
process group ID
session ID
class ID
effective user ID
effective group ID
all processes

These IDs are basic properties of UNIX processes. [See intro(2).] The class ID
refers to the scheduler class of the process. priocntl works only for the time­
sharing and the real-time classes, not for the system class. Processes in the sys­
tem class have fixed priorities assigned when they are started by the kernel.

5-8 System Services and Application Packaging Tools

Commands and Function Calls

The prioentl command

The priocnt1 command comes in four forms:

• priocntl -1 displays configuration information.

• priocnt1 -d. displays the scheduler parameters of processes.

• priocnt1 -s sets the scheduler parameters of processes.

• priocnt1 -e executes a command with the specified scheduler parame­
ters.

1. Here is the output of the -1 option for the default configuration.

2. The -d option displays the scheduler parameters of a process or a set of
processes. The syntax for this option is

priocnt1 -d -i idtype idlist

idtype tells what kind of IDs are in idlist. idlist is a list of IDs separated by white
space. Here are the valid values for idtype and their corresponding ID types in
idlist:

Process Scheduler 5·9

Commands and Function Calls

idtype
pid
ppid
pgid
sid
class
uid
gid
all

idlist
process IDs
parent process IDs
process group IDs
session IDs
class names (TS or RT)
effecti ve user IDs
effective group IDs

Here are some examples of the -d option of priocntl:

3. The -5 option sets scheduler parameters for a process or a set of processes.
The syntax for this option is

priocntl -5 -c class class _options -i idtype idlist

idtype and idlist are the same as for the -d option described above.

class is TS for time-sharing or RT for real-time. You must be superuser to
create a real-time process, to raise a time-sharing user priority above a per­
process limit, or to raise the per-process limit above zero. Class options are
class-specific:

5-10 System Services and Application Packaging Tools

Commands and Function Calls

Class-specific options for priocnt1
class -c class options meaning

real-time RT -p pri priority
-t tsle time slice
-r res resolution

time-sharing TS -p upri user priority
-m uprilim user priority limit

For a real-time process you may assign a priority and a time slice.

• The priority is a number from 0 to the real-time maximum as reported by
pri.ocnt1 -1; the default maximum is 59.

• You specify the time slice as a number of clock intervals and the resolu­
tion of the interval. Resolution is specified in intervals per second. The
time slice, therefore, is tsle/res seconds. To specify a time slice of one­
tenth of a second, for example, you could specify a tsle of 1 and a res of
10. If you specify a time slice without specifying a resolution, millisecond
resolution (a res of 1000) is assumed.

If you change a time-sharing process into a real-time process, it gets a default
priority and time slice if you don't specify one. If you wish to change only the
priority of a real-time process and leave its time slice unchanged, omit the -t
option. If you wish to change only the time slice of a real-time process and
leave its priority unchanged, omit the -p option.

For a time-sharing process you may assign a user priority and a user priority
limit.

• The user priority is the user-controlled component of a time-sharing prior­
ity. The scheduler calculates the global priority of a time-sharing process
by combining this user priority with a system-controlled component that
depends on process behavior. The user priority has the same effect as a
value set by nice (except that nice uses higher numbers for lower prior­
ity).

• The user priority limit is the maximum user priority a process may set for
itself without being superuser. By default, the user priority limit is 0; you
must be superuser to set a user priority limit above O.

Process Scheduler 5-11

Commands and Function calls

Both the user priority and the user priority limit must be within the user prior­
ity range reported by the priocnt1 -1 command. The default range is -20 to
+20.

A process may lower and raise its user priority as often as it wishes, as long as
the value is below its user priority limit. It is a courtesy to other users to lower
your user priority for big chunks of low-priority work. On the other hand, if
you lower your user priority limit, you must be superuser to raise it. A typical
use of the user priority limit is to reduce permanently the priority of child
processes or of some other set of low-priority processes.

The user priority can never be greater than the user priority limit. If you set the
user priority limit below the user priority, the user priority is lowered to the
new user priority limit. If you attempt to set the user priority above the user
priority limit, the user priority is set to the user priority limit.

Here are some examples of the -s option of priocnt1:

4. The -e option sets scheduler parameters for a specified command and exe­
cutes the command. The syntax for this option is

priocnt1 -e -c class class _options command [command arguments]

The class and class options are the same as for the -s option described above.

5-12 System Services and Application Packaging Tools

Commands and Function Calls

The priocntl command subsumes the function of nice, which continues to
work as in previous releases. nice works only on time-sharing processes and
uses higher numbers to assign lower priorities. The final example above is
equivalent to using nice to set an "increment" of 10:

nice -10 make bigprog

The prioentl system call

finclude
finclude
finclude
finclude
finclude

<sys/types.h>
<sys/procset.h>
<sys/priocntl.h>
<sys/rtpriocntl.h>
<sys/tspriocntl.h>

long priocntl(idtype t idtype, id tid, int crnd,
cmd _struct arg); -

The priocntl system call gets or sets scheduler parameters of a set of
processes. The input arguments:

• idtype is the type of ID you are specifying.

• id is the ID.

• crnd specifies which priocntl function to perform. The functions are
listed in the table below.

• arg is a pointer to a structure that depends on crnd.

Process Scheduler 5-13

Commands and Function Calls

Here are the valid values for idtype, which are defined in priocntl. h, and
their corresponding ID types in id:

idtype
I? I?lD
I? I?I?ID
I? I?GlD
I? SID
I? ClD
I? UlD
I? GlD
I? ALL

Interpretation of id

process ID (of a single process)
parent process ID
process group ID
session ID
class ID
effective user ID
effective group ID
all processes

Here are the valid values for cmd, their meanings, and the type of arg:

priocntl Commands
cmd arg Type Function

I?C GETClD pcinfo_t get class ID and attributes -
I?C GETCLlNFO pcinfo_t get class name and attributes
I?C SETI?ARMS pcparms_t set class and scheduling parameters
I?C GETI?ARMS pcparms t get class and scheduling parameters

Here are the values priocntl returns on success:

• The GETClD and GETCLlNFO commands return the number of configured
scheduler classes.

• I?C SETI? ARMS returns O.

• I?C_GETI?ARMS returns the process ID of the process whose scheduler pro­
perties it is returning.

On failure, priocntl returns -1 and sets errno to indicate the reason for the
failure. See priocntl(2) for the complete list of error conditions.

5-14 System Services and Application Packaging Tools

Commands and Function Calls

PC_GETCID, PC_GETCLINFO

The PC_GETCID and PC_GETCLINFO commands retrieve scheduler parameters
for a class based on the class ID or class name. Both commands use the pc info
structure to send arguments and receive return values:

typedef struct pcinfo {
id t pc_cidi
char pc_clname[PC_CLNMSZ]i
long pc_clinfo[PC_CLINFOSZ]i

pcinfo_ti

/* class id */
/* class name */
/* class information */

The PC_GETCID command gets scheduler class ID and parameters given the
class name. The class ID is used in some of the other priocntl commands to
specify a scheduler class. The valid class names are TS for time-sharing and RT
for real-time.

For the real-time class, pc clinfo contains an rtinfo structure, which holds
rt_maxpri, the maximum valid real-time priority; in the default configuration,
this is the highest priority any process can have. The minimum valid real-time
priority is zero. rt_maxpri is a configurable value; the System Administrator's
Guide tells how to configure process priorities.

typedef struct rtinfo
short rt_maxprii /* maximum real-time priority *1

} rtinfo_ti

For the time-sharing class, pc_clinf9 contains a tsinfo structure, which
holds ts_maxupri, the maximum time-sharing user priority. The minimum
time-sharing user priority is -ts_maxupri. ts_maxupri is also a
configurable value.

typedef struct tsinfo
short ts_maxuprii /* limits of user priority range */

} tsinfo_ti

The following program is a cheap substitute for priocntl -1; it gets and
prints the range of valid priorities for the time-sharing and real-time scheduler
classes.

Process SchedUler 5-15

Commands and Function cans

5-16 System Services and Application Packaging Tools

Commands and Function Calls

The following screen shows the output of this program, called getcid in this
example.

The following function is useful in the examples below. Given a class name, it
uses PC_GETCID to return the class ID and maximum priority in the class.

All the following examples omit the lines that include header files. The
examples compile with the same header files as in the first example above.

Process Scheduler 5-17

Commands and Function Calls

The PC _ GETCLINFO command gets a scheduler class name and parameters
given the class ID. This command makes it easy to write applications that make
no assumptions about what classes are configured.

The following program uses PC _ GETCLINFO to get the class name of a process
based on the process ID. This program assumes the existence of a function
getclassID, which retrieves the class ID of a process given the process ID; this
function is given in the following section.

5-18 System Services and Application Packaging Tools

Commands and Function Calls

PC_GETPARMS,PC_SETPARMS
The P9_GETPARMS command gets and the PC_SETPARMS command sets
scheduler parameters for processes. Both commands use the pcparms structure
to send arguments or receive return values:

typedef struct pcparms {
id t pc_cid;
long pc_clparms[PC_CLPARMSZ];

pcparms_t;

/* process class */
/* class specific */

Ignoring class-specific information for the moment, we can write a simple func­
tion for retuming the scheduler class ID of a process, as promised in the previ­
ous section.

Process Scheduler 5·19

Commands and Function Calls

For the real-time class, pc clparms contains an rtparms structure. rtparms
holds scheduler parameters specific to the real-time class:

typedef struct rtparms
short rtyri;
ulong rt_tqsecs;
long rt_tqnsecs;

rtparms_t;

/* real-time priority */
/* seconds in time quantum */
/* additional nsecs in quantum */

rtyri is the real-time priority; rt_tqsecs is the number of seconds and
rt _ tqnsecs is the number of additional nanoseconds in a time slice. That is,
rt _ tqsecs seconds plus rt _ tqnsecs nanoseconds is the interval a process
may use the CPU without sleeping before the scheduler gives another process a
chance at the cpu.
For the time-sharing class, pc_clparms contains a tsparms structure.
t sparms holds the scheduler parameter specific to the time-sharing class:

5-20

typedef struct tsparms
short ts_uprilim;
short ts_uprii

tsparms_t;

/* user priority limit */
/* user priority */

System Services and Application Packaging Tools

Commands and Function Calls

ts_upri is the user priority, the user-controlled component of a time-sharing
priority. ts_upri1im is the user priority limit, the maximum user priority a
process may set for itself without being superuser. These values are described
above in the discussion of the -s option of the priocnt1 command. Both the
user priority and the user priority limit must be within the range reported by
the priocnt1 -1 command; this range is also reported by the PC_GETCID and
PC_GETCLINFO commands to the priocnt1 system call.

The PC_GETPARMS command gets the scheduler class and parameters of a sin­
gle process. The return value of the priocnt1 is the process ID of the process
whose parameters are returned in the pcparms structure. The process chosen
depends on the idtype and id arguments to priocnt1 and on the value of
pcparms . pc _ cid, which contains PC _ CLNULL or a class ID returned by
PC GETCID:

Figure 5·3: What Gets Returned by PC_GETPARMS

Number of Processes pc_cid
Selected by

idtype and id RT class ID TS class 10 PC CLNULL -
RT parameters TS parameters class and

1 of process of process parameters of
selected selected process selected

RT parameters TS parameters
More than 1 of highest- of process with (error)

priority RT pro- highest user
cess priority

If idtype and id select a single process and pc _ cid does not conflict with the
class of that process, priocnt1 returns the scheduler parameters of the process.
If they select more than one process of a single scheduler class, priocnt1
returns parameters using class-specific criteria as shown in the table. priocnt1
returns an error in the following cases:

• idtype and id select one or more processes and none is in the class
specified by pc _ cid.

Process Scheduler 5·21

Commands and Function Cells

• idtype and id select more than one process process and pc_cid is
PC CLNULL .

• idtype and id select no processes.

The following program takes a process ID as its input and prints the scheduler
class and class-specific parameters of that process:

5-22 System Services and Application Packaging Tools

Commands and Function Calls

The PC_SETPARMS command sets the scheduler class and parameters of a set of
processes. The idtype and id input arguments specify the processes to be
changed. The pcparms structure contains the new parameters: pc _ cid con­
tains the ID of the scheduler class to which the processes are to be assigned, as
returned by PC _ GETCID; pc _ clparms contains the class-specific parameters:

.. If pc_cid is the real-time class ID, pc_clparms contains an rtparms
structure in which rt_pri contains the real-time priority and
rt _ tqsecs plus rt _ tqnsecs contains the time slice to be assigned to
the processes .

.. If pc_cid is the time-sharing class ID, pc_clparms contains a tsparms
structure in which ts_uprilim contains the user priority limit and
ts_upri contains the user priority to be assigned to the processes.

Process Scheduler 5-23

Commands and Function Calls

The following program takes a process ID as input, makes the process a real­
time process with the highest valid priority minus 1, and gives it the default
time slice for,that priority. The program calls the schedinfo function listed
above to get the real-time class ID and maximum priority.

5-24 System Services and Application Packaging Tools

Commands and Function calls

The following table lists the special values rt _ tqnsecs can take when
PC_SETPARMS is used on real-time processes. When any of these is used,
rt _ tqsecs is ignored. These values are defined in the header file
rtpriocntl.h:

rt tqnsecs
RT_TQINF
RT_TQDEF
RT NOCHANGE

Time Slice
infinite
default
unchanged

RT_TQINF specifies an infinite time slice. RT_TQDEF specifies the default time
slice configured for the real-.time priority being set with the SETPARMS call.
RT _ NOCHANGE specifies no change from the current time slice; this value is use­
ful, for example, when you change process priority but do not wish to change
the time slice. (You can also use RT_NOCHANGE in the rtyri field to change a
time slice without changing the priority.)

The priocntlset system call

'include
'include
tinclude
'include
• include
tinclude

<sys/types.h>
<sys/siqnal.h>
<sys/procset.h>
<sys/priocntl.h>
<sys/rtpriocntl.h>
<sys/tspriocntl.h>

long priocntlset(procset t *psp, int cmd,
cmd_struct arg); -

The priocntlset system call changes scheduler parameters of a set of
processes, just like priocntl. priocntlset has the same command set as
priocnt.l; the cmd and. arg input arguments are the same. But while
priocntl applies to a set of processes specified by a single idtype/id pair,
priocntlset applies to a set of processes that results from a logical combina­
tion of two idtype/id pairs. The input argument psp points to a procset
structure that specifies the two idtype/id pairs and the logical operation to

Process Scheduler 5-25

Commands and Function Calls

perform. This structure is defined in procset. h:

typedef struct procset (

idop_t p_op; /* operator connecting */
/* left and right sets */

/* left set: */
idtype_t p_lidtype; /* left IO type */
id_t p_lid; /* left IO */

/* right set: */
idtype_t p_ridtype; /* right IO type */
id_t p_rid; /* right IO */

procset_t;

p_lidtype and p_lid specify the 10 type and 10 of one ("left") set of
processes; p_ridtype and p_rid specify the ID type and 10 of a second
(llright") set of processes. p _ op specifies the operation to perform on the two
sets of processes to get the set of processes to operate on. The valid values for
p _ op and the processes they specify are:

• POP_DIFF: set difference-processes in left set and not in right set

• POP_AND: set intersection-processes in both left and right sets

• POP _OR: set union-processes in either left or right sets or both

• POP_XOR: set exclusive-or-processes in left or right set but not in both

The following macro, also defined in procset . h, offers a convenient way to
initialize a procset structure:

'define setprocset(psp, op, ltype, lid, rtype, rid) \
(psp)->P_op - (op); \
(psp)->P_lidtype - (ltype); \
(psp)->P_lid - (lid); \
(psp)->p_ridtype - (rtype)i \
(psp)->p_rid = (rid);

Here is a situation where priocntlset would be useful: suppose an applica­
tion had both real-time and time-sharing processes that ran under a single user
10. If the application wanted to chaJige the priority of only its real-time
processes without changing the time-sharing processes to real-time processes, it
could do so as follows. <This example uses the function schedinfo, which is
defined above in the section on PC_GETCID.)

5-26 System Services and Application Packaging Tools

Commands and Function Calls

priocntl offers a simple scheduler interface that is adequate for many applica­
tions; applications that need a more powerful way to specify sets of processes
can use priocntlset.

Process Scheduler 5-27

Interaction with Other Functions

Kernel Processes

The kernel assigns its demon and housekeeping processes to the system
scheduler class. Users may neither add processes to nor remove processes from
this class, nor may they change the priorities of these processes. The command
ps -eel lists the scheduler class of all processes. Processes in the system class
are identified by a SYS entry in the CLS column.

If the workload on a machine contains real-time processes that use too much
CPU, they can lock out system processes, which can lead to all sorts of trouble.
Real-time applications must ensure that they leave some CPU time for system
and other processes.

fork, exec

Scheduler class, priority, and other scheduler parameters are inherited across the
fork(2) and exec(2) system calls.

nice

The nice(1) command and the nice(2) system call work as in previous ver­
sions of the UNIX system. They allow you to change the priority of only a
time-sharing process. You still use use lower numeric values to assign higher
time-sharing priorities with these functions.

To change the scheduler class of a process or to specify a real-time priority, you
must use one of the priocntl functions. You use higher numeric values to
assign higher priorities with the priocntl functions.

5-28 System Services and Application Packaging Tools

Interaction with Other Functions

init

The init process is treated as a special case by the scheduler. To change the
scheduler properties of init, init must be the only process specified by
idtype and id or by the procset structure.

Process Scheduler 5-29

Performance

Because the scheduler determines when and for how long processes run, it has
an overriding importance in the performance and perceived performance of a
system.

By default, all processes are time-sharing processes. A process changes class
only as a result of one of the priocntl functions.

In the default configuration, all real-time process priorities are above any time­
sharing process priority. This implies that as long as any real-time process is
runnable, no time-sharing process or system process ever runs. So if a real-time
application is not written carefully, it can completely lock out users and essen­
tial kernel housekeeping.

Besides controlling process class and priorities, a real-time application must also
control several other factors that influence its performance. The most important
factors in performance are CPU power, amount of primary memory, and I/O
throughput. These factors interact in complex ways. For more information, see
the chapter on performance management in the System Administrator's Guide. In
particular, the sar(1) command has options for reporting on all the factors dis­
cussed in this section.

Process State Transition

Applications that have strict real-time constraints may need to prevent processes
from being swapped or paged out to secondary memory. Here's a simplified
overview of UNIX process states and the transitions between states:

5-30 System Services and Application Packaging Tools

Performance

Figure 5-4: Process State Transition Diagram

running

assign CPU preempt

runnable
in memory

swap in swap out

runnable
swapped

swap out

sleeping
swapped

An active process is normally in one of the five states in the diagram. The
arrows show how it changes states.

• A process is running if it is assigned to a CPU. A process is preempted­
that is, removed from the running state-by the scheduler if a process
with a higher priority becomes runnable. A process is also preempted if it
consumes its entire time slice and a process of equal priority is runnable.

• A process is runnable in memory if it is in primary memory and ready to
run, but is not assigned to a CPU.

• A process is sleeping in memory if it is in primary memory but is waiting
for a specific event before it can continue execution. For example, a pro­
cess is sleeping if it is waiting for an I/O operation to complete, for a
locked resource to be unlocked, or for a timer to expire. When the event
occurs, the process is sent a wakeup; if the reason for its sleep is gone, the
process becomes runnable.

Process Scheduler 5-31

Performance

• A process is runnable and swapped if it is not waiting for a specific event
but has had its whole address space written to secondary memory to
make room in primary memory for other processes.

• A process is sleeping and swapped if it is both waiting for a specific event
and has had its whole address space written to secondary memory to
make room in primary memory for other processes.

If a machine does not have enough primary memory to hold all its active
processes, it must page or swap some address space to secondary memory:

• When the system is short of primary memory, it writes individual pages
of some processes to secondary memory but still leaves those processes
runnable. When a process runs, if it accesses those pages, it must sleep
while the pages are read back into primary memory.

• When the system gets into a more serious shortage of primary memory, it
writes all the pages of some processes to secondary memory and marks
those processes as swapped. Such processes get back into a schedulable
state only by being chosen by the system scheduler demon process, then
read back into memory.

Both paging and swapping, and especially swapping, introduce delay when a
process is ready to run again. For processes that have strict timing require­
ments, this delay can be unacceptable. To avoid swapping delays, real-time
processes are never swapped, though parts of them may be paged. An applica­
tion can prevent paging and swapping by locking its text and data into primary
memory. For more information see memcntl(2) in the Programmer's Reference
Manual. Of course, how much can be locked is limited by how much memory
is configured. Also, locking too much can cause intolerable delays to processes
that do not have their text and data locked into memory. Tradeoffs between
performance of real-time processes and performance of other processes depend
on local needs. On some systems, process locking may be required to guarantee
the necessary real-time response.

5·32 System Services and Application Packaging Tools

Performance

Software Latencies

Designers of some real-time applications must have information on software
latencies to analyze the performance characteristics of their applications and to
predict whether performance constraints can be met. These latencies depend on
kernel implementation and on system hardware, so it is not practical to list the
latencies. It is useful, however, to describe some of the most important laten­
cies. Consider the following time-line:

PI P2 PI P2 calls PI PI returns from
sleeps runs awakened scheduler runs system call
-t-.... I ;;0 time

tl t2 t3 t4 t5 t6

PI and P2 represent processes; tl through t6 represent points in time. Suppose
that PI has a higher priority than all other active processes, including P2. PI
runs and does a system call that causes it to sleep at time tt, waiting for I/O.
P2 runs. The I/O device interrupts, resulting in a wakeup at time t3 that makes
PI runnable. If P2 is running in user mode at time t3, it is preempted immedi­
ately and the interval (t4 - t3) is, for practical purposes, zero. If P2 is renning
in kernel mode at time t3, it is preempted as soon as it gets to a kernel preemp­
tion point, a point in kernel code where data structures are in a consistent state
and where the state of the current process (P2 in this example) may be saved
and a different process run. Therefore, if P2 is running in kernel mode at time
t3, the interval (t4 - t3) depends on kernel preemptiori points, which are spread
throughout the kernel. It is useful to know both a typical time to preemption
and a maximum time to preemption; these times depend on kernel implementa­
tion and on hardware. Eventually, the scheduler runs (at time t4), finds that a
higher-priority process PI is runnable, and runs it. We refer to the interval (tS
- t4) as the software switch latency of the system. This latency is, for practical
purposes, a constant; again it is an implementation-dependent value. At time
t6, PI returns to the user program from the system call that put it to sleep at
time tl. For simplicity, suppose that the program is getting only a few bytes of
data from the I/O device. In this simple case, the interval (t6 - tS) consists basi­
cally of the overhead of getting out of the system call. We refer to the interval
(t6 - t3) as the software wakeup latency of the system; this is the interval from
thel/O device interrupt until the user process returns to application level to

Process Scheduler 5·33

Performance

deal with the interrupt (assuming that it is the highest priority process). So the
software wakeup latency is composed of a preemption latency, context-switch
time, and a part of system call overhead. Of course, the latency increases as the
system call asks for more data~

This discussion of latencies assumes that the text and data of the processes are
in primary memory. An application may have to use process locking to guaran­
tee that its processes do not get swapped or paged out of primary memory. See
the discussion in the previous section.

Primary Memory for Real-Time U-Blocks

A process u-block contains per-process information that is not needed when the
process is swapped out. The u-block is contained in the user structure defined
in user. h. Normally u-blocks themselves may be swapped or paged. To
guarantee software latencies, however, the UNIX kernel always keeps the u­
blocks of real·time processes in primary memory-it never swaps them. (Time
sharing u-blocks may be swapped.) Designers of real-time applications should
realize that each real-time process has a 6 Kbyte u-area always in primary
memory.

5-34 System Services and Application Packaging Tools

6 Symbolic Links

Introduction

Using Symbolic Links
Properties of Symbolic Links
Creating Symbolic Links

• Syntax and Semantics
• Examples

Removing Symbolic Links
Accessing Symbolic Links
Copying Symbolic Links
Linking Symbolic Links
Moving Symbolic Links
Archiving Commands
File Ownership and Permissions
Using Symbolic Links with RFS

Table of Contents

6-1

6-3
6-3
6-6
6-6
6-7
6-8
6-8
6-8
6-9
6-10
6-11
6-12
6-12

Introduction

A symbolic link is a special type of file that represents another file. The data in
a symbolic link consists of the path name of a file or directory to which the
symbolic link file is linked. The link that is formed is called symbolic to distin­
guish it from a regular (also called a hard) link such as can be created by using
the In(1} command. A symbolic link differs functionally from a regular link in
three major ways: files from different file systems may be linked together; direc­
tories as well as regular files may be symbolically linked by any user; and a
symbolic link can be created even if the file it represents does not exist.

In order to understand how a symbolic link works, it is necessary to understand
how the UNIX operating system views files. (The following description pertains
to files that belong to the standard System V file system type.) The internal
representation of a file is contained in an inode, which contains a description of
the layout of the file data on disk as well as information about the file, such as
the file owner, the access permissions, and the access times. Every file has one
inode, but a file may have several names, all of which point to the inode. Each
name is called a regular (or hard) link.

When a file is created, an inode is allocated for it, the file contents are stored in
data blocks, and an entry is created in a directory. A directory is a file whose
data is a sequence of entries, each consisting of an inode number and the name
of a file. The inode initially has a link count of one, which means that this file
has one name (or one link to it).

We are now in a position to understand the difference between the creation of a
regular and a symbolic link. When a user creates a regular link to a file with
the In(1) command, a new directory entry is created containing a new file name
and the inode number of an existing file. The link count of the file is incre­
mented.

In contrast, when a user creates a symbolic link both a new directory entry and
a new inode are created. A data block is allocated to contain the path name of
the file to which the symbolic link refers. The link count of the referenced file is
not incremented.

Symbolic links can be used to solve a variety of common problems. For exam­
ple, it frequently happens that a disk partition (such as root) runs out of disk
space. With symbolic links, an administrator can create a link from a directory
on that file system to a directory on another file system. Such a link provides
extra disk space and is, in most cases, transparent to both users and programs.

Symbolic Links 6-1

Introduction

Symbolic links can also help deal with the built-in path names that appear in
the code of many commands. Changing the path names would require chang­
ing the programs and recompiling them. With symbolic links, the path names
can effectively be changed by making the original files symbolic links that point
to new files.

In a shared resource environment like RFS, symbolic links can be very useful.
For example, if it is important to have a single copy of certain administrative
files, symbolic links can be used to help share them. Symbolic links can also be
used to share resources selectively. Suppose a system administrator wants to do
a remote mount of a directory that contains sharable devices. These devices
must be in /dev on the client system, but this system has devices of its own so
the administrator does not want to mount the directory onto /dev. Rather than
do this, the administrator can mount the directory at a location other than / dey
and then use symbolic links in the /dev directory to refer to these remote dev­
ices. (This is similar to the problem of built-in path names since it is normally
assumed that devices reside in the /dev directory.)

Finally, symbolic links can be valuable within the context of the virtual file sys­
tem (VFS) architecture. With VFS new services, such as higher performance
files, events, and network IPC, may be provided on a file system basis. Sym­
bolic links can be used to link these services to home directories or to places
that make more sense to the application or user. Thus one might create a data­
base index file in a RAM-based file system type and symbolically link it to the
place where the database server expects it and manages it.

6-2 System Services and Application Packaging Tools

Using Symbolic Links

The phrases "following symbolic links" and "not following symbolic links" as
they are used in this document refer to the evaluation of the last component
of a path name. In the evaluation of a path name, if any componel')t other
than the last is a symbolic link, the symbolic link is followed and the refer­
enced file is used in the path name evaluation. However, if the last com-
ponent of a path name is a symbolic link, the link mayor may not be fol­
lowed.

Properties of Symbolic Links

This section summarizes some of the essential characteristics of symbolic links.
Succeeding sections describe how symbolic links may be used, based on the
characteristics outlined here.

As we have seen above, a symbolic link is a new type of file that represents
another file. The file to which it refers may be of any type; a regular file, a
directory, a character-special, block-special, or FIFO-special file, or another sym­
bolic link. The file may be on the local system or on a remote system. In fact,
the file to which a symbolic link refers does not even have to exist. In particu­
lar, the file does not have to exist when the symbolic link is created or when it
is removed.

Creation and removal of a symbolic link follow the same rules that apply to any
file. To do either, the user must have write permission in the directory that con­
tains the symbolic link.

The ownership and the access permissions (mode) of the symbolic link are
ignored for all accesses of the symbolic link. It is the ownership and access per­
missions of the referenced file that are used. A symbolic link cannot be opened
or dosed and its contents cannot be changed once it has been created.

If the file /usr/jan/junk is a symbolic link to the file /etc/passwd, in effect
the file name /etc/passwd is substituted for junk so that when the user exe­
cutes

cat /usr/jan/junk

it is the contents of the file /etc/passwd that are printed.

Symbolic Links 6-3

Using Symbolic Links

Similarly, if /usr/jan/junk is a symbolic link to the file .. /junk2, executing

cat /usr/jan/junk

is the same as executing

cat /usr/jan/ .. /junk2

or

cat /usr/junk2

When a symbolic link is followed and brings a user to a different part of the file
tree, we may distinguish between where the user really is (the physical path)
and how the user got there (the virtual ~th). The behavior Qf /usr/birt/pwd,
the shell built-in pwd, and. . are all based on the physical path. In practical
terms this means that there is no way for the user to retrace the path which
brought the user to the current position in the file tree.

Other shells may use the virtual path. For example, by default the Korn
shell pwd uses the virtual path, though there is an option allowing the user
to make it use the physical path.

Consider the case shown in Figure 6-1 where /usr/include/sys is a symbolic
link to /usr/src/uts/sys.

6-4 System Services and Application Packaging Tools

Figure 6·1: File Tree with Symbolic Link

/

usr

src include

uts sys

sys

Here if a user enters

cd /usr/include/sys

and then enters pwd, the result is

/usr/src/uts/sys

-> /usr/src/uts/sys

If the user then enters cd.. followed by pwd, the result is

/usr/src/uts

Symbolic Links

Using Symbolic Links

6·5

Using Symbolic Links

Creating Symbolic Links

Syntax and Semantics
To create a symbolic link, the new system call symlink(2) is used and the owner
must have write permission in the directory where the link will reside. The file
is created with the user's user-id and group-id but these are subsequently
ignored. The mode of the file is created as 0777. T No checking is done when a symbolic link is created. There is nothing to
...>..... (stop a user !rom creating a ~ymbo. lic link that refers to itself or to an

< ancestor of itself or several links that loop around among themselves.
Therefore, when evaluating a path name, it is important to put a limit on
the number of symbolic links that may be encountered in case the evalua­
tion encounters a loop. The variable MAXSYMLINKS is used to force the
error ELOOP after MAXSYMLINKS symbolic links have been encountered.
The value of MAXSYMLINKS should be at least 20.

To create a symbolic link, the In(1) command is used with the -s option. If the
-s option is not used and a user tries to create a link to a file on another file
system, a symbolic link will not be created and the command will fail.

The syntax for creating symbolic links is as follows:

ln -s sourcefilel [sourcefile2 ...] target

With two arguments:

6-6

• sourcefilel may be any path name and need not exist.

• target may be an existing directory or a non-existent file.

• If target is an existing directory, a file is created in directory target whose
name is the last component of sourcefilel ('basename sourcefilel '). This file
is a symbolic link that references sourcefilel.

• If target does not exist, a file with name target is created and it is a sym­
bolic link that references sourcefilel.

• If target already exists and is not a directory, an error is returned.

• sourcefilel and target may reside on different file systems.

System Services and Application Packaging Tools

Using Symbolic Links

With more than two arguments:

• For each source file, a file is created in target whose name is sourcefile or its
last component ('basename source file'> and is a symbolic link to sourcefile.

• If target is not an existing directory, an error is returned.

• Each sourcefile and target may reside on different file systems.

Examples
The following examples show how symbolic links may be created.

In -s /usr/sre/uts/sys /usr/inelude/sys

In this example /usr/inelude is an existing directory. But file sys does not
exist so it will be created as a symbolic link that refers to /usr/sre/uts/sys.
The result is that when file /usr/inelude/sys/x is accessed, the file
/usr/sre/uts/sys/x will actually be accessed.

This kind of symbolic link may be used when files exist in the directory
/usr/sre/uts/sys but programs often refer to files in /usr/inelude/sys.
Rather than creating corresponding files in /usr/inelude/sys that are hard
links to files in /usr/sre/uts/sys, one symbolic link can be used to link the
two directories. In this example /usr/inelude/sys becomes a symbolic link
that links the former /usr/inelude/sys directory to the /usr/sre/uts/sys
directory.

In -s /ete/group

In this example the target is a directory (the current directory), so a file called
group ('basename /ete/group') is created in the current directory that is a sym­
bolic link to / ete/ group.

In -s /fsl/jan/abc /var/spool/abc

In this example we imagine that /fsl/jan/abc does not exist at the time the
command is issued. Nevertheless, the file /var/spool/abe is created as a sym­
bolic link to /fsl/jan/abe. Later, /fsl/jan/abe may be created as a direc­
tory, regular file, or any other file type.

The following example illustrates the use of more than two iU'gllments:

In -s /ete/group /ete/passwd .

Symbolic Links

Using Symbolic Links

The user would like to have the group and passwd files in the current directory
but cannot use hard links because letc is a different file system. When more
than two arguments are used, the last argument must be a directory; here it is
the current directory. Two files, group and passwd, are created in the current
directory, each a symbolic link to the associated file in I etc.

Removing Symbolic Links

Normally, when accessing a symbolic link, one follows the link and actually
accesses the referenced file. However, this is not the case when one attempts to
remove a symbolic link. When the rnO) command is executed and the argu­
ment is a symbolic link, it is the symbolic link that is removed; the referenced
file is not touched.

Accessing Symbolic Links

Suppose abc is a symbolic link to file def. When a user accesses the symbolic
link abc, it is the file permissions (ownership and access) of file def that are
actually used; the permissions of abc are always ignored. If file def is not
accessible (i.e., either it does not exist or it exists but is not accessible to the user
because of access permissions) and a user tries to access the symbolic link abc,
the error message will refer to abc, not file def.

Copying Symbolic Links

This section describes the behavior of the cp(1) command when one or more
arguments are symbolic links. With the cp(1) command, if any argument is a
symbolic link, that link is followed. Then the semantics of the command are as
described in the User's Reference Manual. Suppose the command line is

cp sym file3

where sym is a symbolic link that references a regular file test! and file3 is a
regular file. After execution of the command, file3 gets overwritten with the
contents of the file test!.

6-8 System Services and Application Packaging Tools

Using Symbolic Links

If the last argument is a symbolic link that references a directory, then files are
copied to that directory. Suppose the command line is

cp filel sym synd

where filel is a regular file, sym is a symbolic link that references a regular file
testl, and synd is a symbolic link that references a directory OIR. After execu­
tion of the command, there will be two new files, OIR/filel and OIR/sym that
have the same contents as filel and testl.

Linking Symbolic Links

This section describes the behavior of the 10(1) command when one or more
arguments are symbolic links. To understand the difference in behavior
between this and the cp(1) command, it is useful to think of a copy operation as
dealing with the contents of a file while the link operation deals with the name
of a file.

If the first argument to 10(1) is a symbolic link it is not followed, and a hard
link is made to the symbolic link. With the last argument, a stat(2) is done to
see if it is a directory; if it is, files are linked in that directory. Otherwise, if the
last argument is an existing file, it is overwritten. This means that if the last
argument is a symbolic link to a directory, it is followed but if it is a symbolic
link to a regular file, the symbolic link is overwritten.

For example, if the command line is

10 sym filel

where sym is a symbolic link that references a regular file foo, and filel is a
regular file, filel is overwritten and hard-linked to sym, i.e., filel becomes a
symbolic link that references foo. Thus a hard link has been created to a sym­
bolic link.

If the command is

10 filel sym

where the files are the same as in the first- example, sym is overwritten and
hard-linked to filel.

Symbolic Links 6-9

Using Symbolic Links

When the last argument is a directory as in

ln filel sym symd

where symd is a symbolic link to a directory DIR, the file DIR/filel is hard­
linked to filel and DIR/ sym is hard-linked to sym.

Moving Symbolic Links

This section describes the behavior of the mv(1) command. Like the In(1) com­
mand, mv(1) deals with file names rather than file contents. With two argu­
ments, a user invokes the mv(l) cOmpliind to rename a file. Therefore, one
would not want to follow the first argument if it is a symbolic link because it is
the name of the file that is to be changed rather than the file contents. Suppose
that sym is a symbolic link to /etc/passwd and abc is a regular file. If the com­
mand

mv sym abc

is executed, the file sym lS renamed abc and is still a symbolic link to
/etc/passwd. If abc existed (as a regular file or a symbolic link to a regular
file) before the command was executed, it is overwritten.

Suppose the command is

mv syml filel symd

where syml is a symbolic link to a regular file foo, filel is a regular file, and
symd is a symbolic link that references a directory DIR. When the command is
executed, the files syml and filel are moved from the current directory to the
DIR directory so that there are two new files, DIR/ syml, which is still a symbolic
link to foo, and DIR/filel.

In SVR4.0, the rename(2) system call will be used by the mv(1) command. If the
first argument to rename(2) is a symbolic link, rename(2) does not follow iti
instead it renames the symbolic link itself. Prior to SVR4.0 a file was moved
using the link(2) system call followed by the unlink(2) system call. Since
link(2) and unlink(2) do not follow symbolic links, the result of those two
operations is the same as the result of a call to rename(2).

6-10 System Services and Application Packaging Tools

Using Symbolic Links

Archiving Commands

The cpio(l) command is used to copy file archives usually to or from a storage
medium such as a tape, disk, or diskette. By default, cpio(1) does not follow
symbolic links. However, a new -L option may be used with the -0 and -p
options to indicate that symbolic links should be followed. Note that this
option is not valid with the -i option.

Normally, a user invokes the find(1) command to produce a list of filenames
and pipes this into the cpio(1) command to create an archive of the files listed.
The find(1) command also has a new option -follow to indicate that symbolic
links should be followed. If a user invokes find(1) with the -follow option,
then cpio(1) must also be invoked with its new option -L to indicate that it too
should follow symbolic links.

When evaluating the output from find(1), following or not following symbolic
links only makes a difference when a symbolic link to a directory is encoun­
tered. For example, if /usr/jan/symd is a symbolic link to the directory
. .ljoe/test and files test! and test2 are in directory /usr/joe/test, the
output of a find command starting from /usr/jan will include the file
/usr/jan/symd if symbolic links are not followed but will include the files
/usr/jan/symd, /usr/jan/symd/testl, and /usr/jan/syd/test2 when sym­
bolic links are followed.

If the user wants to preserve the structure of the directories being archived, it is
recommended that symbolic links not be followed on both commands. (This is
the default.) When this is done symbolic links will be preserved and the direc­
tory hierarchy will be duplicated as it was.

If the user is more concerned that the contents of the files be saved, then the
user should use the -L option to cpio(1) and the -follow option to find(1) to
follow symbolic links. T The user should lake care nollo mix modos, Ihal is, tho user should
\i.)i eithe. r follow ~r not follow ~ymtx:>lic links for both epio(1) a.nd f~d(1). If

> modes are mixed, an archive Will be created but the resuhlng hierarchy
created by epio -i may exhibit unexpected and undesirable results.

When copying in using the -i option to cpio(1), symbolic links will be copied
as is. It should be noted that systems prior to SVR4.0 do not understand sym­
bolic links and the result of copying in a symbolic link will be a regular file
whose contents are the path name of the referenced file. So if a user is creating

Symbolic Links 6-11

Using Symbolic Links

an archive to be read in on a pre-SVR4.0 system, it may be more useful to fol­
low symbolic links.

File Ownership and Permissions

The commands chm:xi(1), chown(1), and chgrp(l), and their corresponding sys­
tem calls are used to change the mode and ownership of a file. If the argument
to chm:xi(1), chown(1), or chgrp(l) is a symbolic link, the mode and ownership
of the referenced file rather than of the symbolic link itself will be changed. In
such cases, the link is followed.

Once a symbolic link has been created, its permissions cannot be changed. By
default, the chown(1) and chgrp(1) commands change the owner and group of
the referenced file. However, a new -h option enables the user to change the
owner and group of the symbolic link itself. This is useful for removing files
from sticky directories.

Using Symbolic Links with RFS

When using symbolic links in an RFS environment, it is important to under­
stand how pathnames are evaluated. The rule by which evaluations are per­
formed is simple. Symbolic links that a client encounters on the server are
interpreted in accordance with the client's view of the file tree.

Users on a server system must keep this rule in mind when they create sym­
bolic links in order to avoid problems. The examples that follow illustrate situa­
tions in which failure to consider the client's view of the file tree can lead to
problems.

6-12 System Services and Application Packaging Tools

Using Symbolic Links

Figure 6-2: Symbolic Links with RFS: Example 1

CLIENT SERVER

/ /

I I
usr ----------------------~~ usr

A
src include

sys _> /usr/src/uto/sys

or

-> . ./src/uts/:rys

uts

I
sys

vnode.h

In the example shown in Figure 6-2, the server advertises its /usr file system as
USR. If the server creates the symbolic link /usr/include/sys as an absolute
pathname to /usr/src/uts/sys, evaluation of the link will work as intended as
long as a client mounts USR as /usr. Another way of saying this is that if the
file tree naming conventions are the same on the client and the server, things
will work as intended.

However, if the client mounts USR as /mnt/usr, when the symbolic link
/usr/src/uts/sys is evaluated, the evaluation will be done with respect to the
client's view of the file tree and will not cross the mount point back to the
server but will remain on the client. Thus the client will not access the file
intended.

Symbolic Links 6-13

Using Symbolic Links

In this situation the server should create the symbolic link as a relative path
name, .. /src/uts/sys, so that evaluation will produce the desired results
regardless of where the client mounts USR.

Figure 6-3: Symbolic Links with RFS: Example 2

CLIENT SERVER

/

I 1---------3b2
----'""~~ usr ____ usr

A
usr

I
src

src include

I
uts

or
I

sys

I
new.h

uts

I

sys _> /Ullr/arc/uta/ays

-> .. /are/uta/aya

sys

~
vnode. h new. A> /3b2/usr/are/uta/ays/new.h

Another example of a situation that could cause problems is shown in Figure 6-
3. Here again the server advertises its /usr file system as USR. But in this case
the server has a symbolic link from /usr/src/uts/sys/new.h to
/3b2/usr/src/uts/sys/new. h. Because the referenced file,
/3b2/usr/ src/uts/ sys/new . h, is outside of the advertised resource, users on
the server can access this file but users on the client cannot. In this example, it
would make no difference if the symbolic link was a relative rather than an
absolute pathname, because the directory /3b2 on the server is not part of the
client's name space. When the symbolic link is evaluated, the system will look
for the file on the client and will not follow the link as intended.

6-14 System Services and Application Packaging Tools

7 Memory Management

Overview of the Virtual Memory System 7-1
Virtual Memory, Address Spaces and Mapping 7-1
Networking, Heterogeneity and Coherence 7-2

Memory Management Interfaces 7-4
Creating and Using Mappings 7-4
Removing Mappings 7-9
Cache Control 7-10
Other Mapping Functions 7-13

Address Space Layout 7-15

Table of Contents

Overview of the Virtual Memory System

The UNIX system provides a complete set of memory management mechanisms,
providing applications complete control over the construction of their address
space and permitting a wide variety of operations on both process address
spaces and the variety of memory objects in the system. Process address spaces
are composed of a vector of memory pages, each of which can be independently
mapped and manipulated. Typically, the system presents the user with map­
pings that simulate the traditional UNIX process memory environment, but
other views of memory are useful as well.

Th~ UNIX memory-management .facilities:

• Unify.the system's operations on memory.

• Provide a set of kernel mechanisms powerful and general enough to sup­
port the implementation of fundamental system services without special­
purpose kemelsupport.

• Maintain consistency with the existing environment, in particular using
the UNIX file system as the name space for named virtual-memory
objects.

Virtual Memory, Address Spaces and Mapping

The system's virtual memory (VM) consists of all available physical memory
reso.urces. Examples include local and remote file systems, processor primary
memory, swap space, and other random-access devices. Named objects in the
virtual memory are referenced though the UNIX file system. However, not all
file system objects are in the virtual memory; devices that cannot be treated as
storage, such as terminal and network device files, are not in the virtual
memory. Some virtual memory objects, such as private process memory and
shared memory segments, do not have names.

A process's address space is defined by mappings onto objects in the system's
virtual memory (usually files). Each mapping is constrained to be sized and
aligned with the page boundaries of the system on which the process is execut­
ing. Each page may be mapped (or not) independently .. Only process addresses
which are mapped to some system object are valid, for there is no memory asso­
ciated with processes themselves--all memory is represented by objects in the
system's virtual memory.

Memory Management 7-1

Overview of the Virtual Memory System

Each object in the virtual memory has an object address space defined by some
physical storage. A reference to an object address accesses the physical storage
that implements the address within the object. The virtual memory's associated
physical storage is thus accessed by transforming process addresses to object
addresses, and then to the physical store.

A given process page may map to only one object, although a given object
address may be the subject of many process mappings. An important charac­
teristic of a mapping is that the object to which the mapping is made is not
affected by the mere existence of the mapping. Thus, it cannot, in general, be
expected that an object has an "awareness" of having been mapped, or of which
portions of its address space are accessed by mappings; in particular, the notion
of a "pageil is not a property of the object. Establishing a mapping to an object
simply provides the potential for a process to access or change the object's con­
tents.

The establishment of mappings provides an access method that renders an
object directly addressable by a process. Applications may find it advantageous
to access the storage resources they use directly rather than indirectly through
read and write. Potential advantages include efficiency (elimination of
unnecessary data copying) and reduced complexity (single-step updates rather
than the read, modify buffer, write cycle). The ability to access an object and
have it retain its identity over the course of the access is unique to this access
method, and facilitates the sharing of common code and data.

Networking, Heterogeneity and Coherence

VM is designed to fit well with the larger UNIX heterogeneous environment.
This environment makes extensive use of networking to access file systems-file
systems that are now part of the system's virtual memory. Networks are not
constrained to consist of similar hardware or to be based upon a common
operating system; in fact, the opposite is encouraged, for such constraints create
serious barriers to accommodating heterogeneity. While a given set of processes
may apply a set of mechanisms to establish and maintain the properties of vari­
ous system objects-properties such as page sizes and the ability of objects to
synchronize their own u~ given operating system should not impose such
mechanisms on the rest of the network.

System Services and Application Packaging Tools

Overview of the Virtual Memory System

As it stands, the access method view of a virtual memory maintains the poten­
tial for a given object (say a text file) to be mapped by systems running the
UNIX memory management system and also to be accessed by systems for
which virtual memory and storage management techniques such as paging are
totally foreign, such as PC-DOS. Such systems can continue to share access to
the object, each using and providing its programs with the access method
appropriate to that system. The unacceptable alternative would be to prohibit
access to the object by less capable systems.

Another consideration arises when applications use an object as a communica­
tions channel, or otherwise attempt to access it simultaneously. In both of these
cases, the object is being shared, and thus the applications must use some syn­
chronization mechanism to guarantee the coherence of their transactions with it.
The scope and nature of the synchronization mechanism is best left to the appli­
cation to decide. For example, file access on systems which do not support vir­
tual memory access methods must be indirect, by way of read and write.
Applications sharing files on such systems must coordinate their access using
semaphores, file locking, or some application-specific protocols. What is
required in an environment where mapping replaces read and write as the
access method is an operation, such as fsync, that supports atomic update
operations.

The nature and scope of synchronization over shared objects is application­
defined from the outset. If the system attempted to impose any automatic
semantics for sharing, it might prohibit other useful forms of mapped access
that have nothing whatsoever to do with communication or sharing. By provid­
ing the mechanism to support coherency, and leaving it to cooperating applica­
tions to apply the mechanism, the needs of applications are met without erect­
ing barriers to heterogeneity. Note that this design does not prohibit the crea­
tion of libraries that provide coherent abstractions for common application
needs. Not all abstractions on which an application builds need be supplied by
the "operating system."

Memory Management 7-3

Memory Management Interfaces

The applications programmer gains access to the facilities of the VM system
through several sets of system calls. This section summarizes these calls, and
provides examples of their use. For details, see the Programmer's Reference
Manual.

Creating and Using Mappings

mmap establishes a mapping between a process's address space and an object in
the system's virtual memory. It is the system's most fundamental function for
defining the contents of an address space - all other system functions that con­
tribute to the definition of an address space are built from mmap. The format of
an minap call is:

paddr - mmap(addr, len, prot, flags, fd, off);

mmap establishes a mapping from the process's address space at an address
paddr for len bytes to the object specified by fd at offset off for len bytes. The
value returned by mmap is an implementation-dependent function of the param­
eter addr and the setting of the MAI?_FIXED bit of flags, as described below. A
successful call to mmap returns paddr as its result. The address range lpaddr,
paddr + len) must be valid for the address space of the process and the range
[off, off + len) must be valid for the virtual memory object. (The notation [start,
end) refers to the interval from start to end, including start but not including
end.>

7-4

The mapping established by nunap replaces any previous mappings for the
process's pages in the range [paddr, paddr + len).

System Services and Application Packaging Tools

Memory Management Interfaces

The parameter prot determines whether read, execute, write or some combina­
tion of accesses are permitted to the pages being mapped. To deny ail access,
set prot to P ROT_NONE. Otherwise, specify permissions by an OR of
PROT_READ, PROT_EXECUTE, and PROT_WRITE. A write access must fail if
PROT_WRITE has not been set, though the behavior of the write can be
influenced by setting MAP_PRIVATE in the flags parameter, as described below.

The flags parameter provides other information about the handling of mapped
pages:

• MAP_SHARED and MAP_PRIVATE specify the mapping type, and one of
them must be specified. The mapping type describes the disposition of
store operations made by this process into the address range defined by
the mapping operation. If MAP _SHARED is specified, write references will
modify the mapped object. No further operations on the object are neces­
sary to effect a change - the act of storing into a MAP_SHARED mapping
is equivalent to doing a write system call.

On the other hand, if MAP_PRIVATE is specified, an initial write reference
to a page in the mapped area will create a copy of that page and redirect
the initial and successive write references to that copy. This operation is
sometimes referred to as copy-on-write and occurs invisibly to the process
causing the store. Only pages actually modified have copies made in this
manner. MAP_PRIVATE mappings are used by system functions such as
exec(2) when mapping files containing programs for execution. This per­
mits operations by programs such as debuggers to modify the "text"
(code) of the program without affecting the file from which the program
is obtained.

The mapping type is retained across a fork.

The private copy is not created until the first write; until then, other
users who have the object mapped MAP SHARED can change the
object. That is, if one user has an object mapped MAP PRIVATE and
another user has the same object mapped MAP SHARED, and the
MAP_SHARED user changes the object before the MAP_PRIVATE user
does the first write, then the changes appear in the MAP PRIVATE
user's copy that the system makes on the first write. If an application
needs isolation from changes made by other processes, it should use
read to make a copy of the data it wishes to keep isolated.

Memory Management 7-5

Memory Management Interfaces

• MAP_FIXED informs the system that the value returned by mmap must be
addr, exactly. The use of MAP_FIXED is discouraged, as it may prevent an
implementation from making the most effective use of system resources.
When MAP _FIXED is not set, the system uses addr as a hint to arrive at
paddr. The paddr so chosen is an area of the address space that the system
deems suitable for a mapping of len bytes to the specified object. An addr
value of zero grants the system complete freedom in selecting paddr, sub­
ject to constraints described below. A non-zero value of addr is taken as a
suggestion of a process address near which the mapping should be
placed. When the system selects a value for paddr, it never places a map­
ping at address 0, nor replaces any extant mapping, nor maps into areas
considered part of the potential data or stack "segments." The system
strives to choose alignments for mappings that maximize the performance
of the its hardware resources.

The file descriptor used in a mmap call need not be kept open after the mapping
is established. If it is closed, the mapping will remain until such time as it is
replaced by another call to mmap that explicitly specifies the addresses occupied
by this mapping; or until the mapping is removed either by process termination
or a call to munmap. Although the mapping endures independent of the
existence of a file descriptor, changes to the file can influence accesses to the
mapped area, even if they do not affect the mapping itself. For instance, should
a file be shortened by a call to truncate, such that the mapping now
"overhangs" the end of the file, then accesses to that area of the file which
"does not exist" will result in SIGBUS signals. It is possible to create the map­
ping in the first place such that it "overhangs" the end of the file - the only
requirement when creating a mapping is that the addresses, lengths, and offsets
specified in the operation be possible (i.e., within the range permitted for the
object in question), not that they exist at the time the mapping is created (or
subsequently.)

Similarly, if a program accesses an address in a manner inconsistently with how
it has been mapped (for instance, by attempting a store operation into a map­
ping that was established with only PROT_READ access), then a SIGSEGV signal
will result. SIGSEGV signals will also result on any attempt to reference an
address not defined by any mapping.

In general, if a program makes a reference to an addr~ss that is inconsistent
with the mapping (or lack of a mapping) established at that address, the system
will respond with a SIGSEGV violation. However, if a program makes a refer­
ence to an address consistent with how the address is mapped, but that address

System Services and Application Packaging Tools

Memory Management Interfaces

does not evaluate at the time of the access to allocated storage in the object
being mapped, then the system will respond with a SIGBUS violation. In this
manner a program (or user) can distinguish between whether it is the mapping
or the object that is inconsistent with the access, and take appropriate remedial
action.

Using mmap to access system memory objects can simplify programs in a variety
of ways. Keeping in mind that mmap can really be viewed as just a means to
access memory objects, it is possible to program using mmap in many cases
where you might program with read or write. However, it is important to
realize that mmap can only be used to gain access to memory objects - those
objects that can be thought of as randomly accessible storage. Thus, terminals
and network connections cannot be accessed with mmap because they are not
"memory." Magnetic tapes, even though they are memory devices, can not be
accessed with mmap because storage locations on the tape can only be addressed
sequentially. Some examples of situations which can be thought of as candi­
dates for use of mmap over more traditional methods of file access include:

• Random access operations - either map the entire file into memory or, if
the address space can not accommodate the file or if the file size is vari­
able, create "windows" of mappings to the object.

• Efficiency - even in situations where access is sequential, if the object
being accessed can be accessed via mmap, an efficiency gain may be
obtained by avoiding the copying operations inherent in accesses via
read or write.

• Structured storage - if the storage being accessed is collected as tables or
data structures, algorithms can be more conveniently written if access to
the file is treated just as though the tables were in memory. Previously,
programs could not simply make storage or table alterations in memory
and save them for access in subsequent runs; however, when the
addresses of the table are defined by mappings to a file, then changes to
the storage are changes to the file, and are thus automatically recorded in
it.

• Scattered storage - if a program requires scattered regions of storage,
such as multiple heaps or stack areas, such areas can be defined by map­
ping operations during program operation.

Memory Management 7-7

Memory Management Interfaces

The remainder of this section will illustrate some other concepts surrounding
mapping creation and use.

Mapping /dev/zero gives the calling program a block of zero-filled virtual
memory of the size specified in the call to mmap. /dev/zero is a special dev­
ice, that responds to read as an infinite source of bytes with the value 0, but
when mapped creates an unnamed object to back the mapped region of
memory. The following code fragment demonstrates a use of this to create a
block of scratch storage in a program, at an address of the system's choosing.

As written, this function permits a hierarchy of processes to use the area of allo­
cated storage as a region of communication (for implicit interprocess communi­
cation purposes). Later in this chapter we will describe a set of system facilities
that provide a similar function packaged for accomplishing the same purpose
without requiring that the processes be in a parent-child hierarchy.

In some cases, devices or files are only useful if accessed via mapping. An
example of this is frame buffer devices used to support bit-mapped displays,
where display management algorithms function best if they can operate ran­
domly on the addresses of the display directly.

7-8 System Services and Application Packaging Tools

Memory Management Interfaces

Finally, it is important to remember that mappings can be operated upon at the
granularity of a single page. Even though a mapping operation may define
multiple pages of an address space, there is absolutely no restriction that subse­
quent operations on those addresses must operate on the same number of
pages. For instance, an mmap operation defining ten pages of an address space
may be followed by subsequent munrnap (see below) operations that remove
every other page from the address space, leaving five mapped pages each fol­
lowed by an unmapped page. Those unmapped pages may subsequently be
mapped to different locations in the same or different objects, or the whole
range of pages (or any partition, superset, or subset of the pages) used in other
mmap or other memory management operations. Further, it must be noted that
any mapping operation that operates on more than a single page can "partially
succeed" in that some parts of the address range can be affected even though
the call returns a failure. Thus, an mmap operation that replaces another map­
ping, if it fails, may have deleted the previous mapping and failed to replace it.
Similarly, other operations (unless specifically stated otherwise) may process
some pages in the range successfully before operating on a page where the
operation fails.

Not all device drivers support memory mapping. mmap fails if you try to map a
device that does not support mapping.

Removing Mappings

munrnap removes all mappings for pages in the range [addr, addr + len) from the
address space of the calling process. It is not an error to remove mappings
from addresses that do not have them, and any mapping, no matter how it was
established, can be removed with munrnap. munrnap does not in any way affect
the objects that were mapped at those addresses.

Memory Management 7·9

Memory Management Interfaces

Cache Control

The UNIX memory 1l\4lnagement system can be thought of as a form of "cache
management", in which a processor's primary memory is used as a cache for
pages from objects from the system's virtual memory. Thus, there are a number
of operations which control or interrogate the status of this "cache", as
described in this section.

mincore determines the residency of the memory pages in the address space
covered by mappings in the range [addr, addr + len). Using the "cache concept"
described earlier, this function can be viewed as an operation that interrogates
the status of the cache, and returns an indication of what is currently resident in
the cache. The status is returned as a char-per-page in the character array refer­
enced by *vee (which the system assumes to be large enough to encompass all
the pages in the address range). Each character contains either a "I" (indicating
that the page is resident in the system's primary storage), or a "0" (indicating
that the page is not resident in primary storage.) Other bits in the character are
reserved for possible future expansion - therefore, programs testing residency
should test only the least significant bit of each character.

mincore returns reSidency information that is accurate at an instant in time.
Because the system may frequently adjust the set of pages in memory, this infor­
mation may quickly be outdated. Only locked pages are guaranteed to remain
in memory.

7-10 System Services and Application Packaging Tools

Memory Management Interfaces

mementl provides several control operations over mappings in the range [addr,
addr + len), including locking pages into physical memory, unlocking them, and
writing pages to secondary storage. The functions described in the rest of this
section offer simplified interfaces to the mementl operations.

mloek causes the pages referenced by the mapping in the range [addr, addr +
len) to be locked in physical memory. References to those pages <through other
mappings in this or other processes) will not result in page faults that require an
I/O operation to obtain the data needed to satisfy the reference. Because this
operation ties up physical system resources, and has the potential to disrupt
normal system operation, use of this facility is restricted to the superuser. The
system will not permit more than a configuration-dependent limit of pages to be
locked in memory simultaneously, the call to mloek will fail if this limit is
exceeded.

munloek releases the locks on physical pages. Note that if multiple mloek
calls are made through the same mapping, only a single munloek call will be
required to release the locks (in other words, locks on a given mapping do not
nest.) However, if different mappings to the same pages are processed with
mloek, then the pages will not be unlocked until the locks on all the mappings
are released.

Locks are also released when a mapping is removed, either through being
replaced with an mmap operation or removed explicitly with munmap. A lock
will be transferred between pages on the "copy-on-write" event associated with
a MAP _PRIVATE mapping, thus locks on an address range that includes
MAP_PRIVATE 9Wl?P!ngs will be retained transparently along with the copy­
on-write redireetio4'('!;ee mmap above for a discussion of this redirection).

/,' .,,'

Memory Management 7-11

Memory Management Interfaces

mlockall and munlockall are similar in purpose and restriction to mlock
and munlock, except that they operate on entire address spaces. mlockall
accepts a flags argument built as a bit-field of values from the set:

MCL CURRENT
MCL FUTURE

Current mappings
Future mappings

If flags is MCL_CURRENT, the lock is to affect everything currently in the address
space. If flags is MCL_FUTURE, the lock is to affect everything added in the
future. If flags is (MCL_CURRENT I MCL_FUTURE), the lock is to affect both
current and future mappings.

munlockall removes all locks on all pages in the address space, whether esta­
blished by mlock or mlockall.

msync supports applications which require assertions about the integrity of data
in the storage backing their mapping, either for correctness or for coherent com­
munications in a distributed environment. msync causes all modified copies of
pages over the range [addr, addr + len) to be flushed to the objects mapped by
those addresses. In the cache analogy discussed previously, msync is the cache
"write-back," or flush, operation. It is similar in purpose to the fsync opera­
tion for files.

msync optionally invalidates such cache entries so that further references to the
pages cause the system to obtain them from their permanent storage locations.

7-12 System Services and Application Packaging Tools

Memory Management Interfaces

The flags argument provides a bit-field of values that influences the behavior of
msync. The bit names and their interpretations are:

MS SYNC synchronized write
MS ASYNC return immediately
MS INVALIDATE invalidate caches

MS_SYNC causes msync to return only after all I/O operations are complete.
MS_ASYNC causes msync to return immediately once all I/O operations are
scheduled. MS_INVALIDATE causes all cached copies of data from mapped
objects to be invalidated, requiring them to be reobtained from the object's
storage upon the next reference.

Other Mapping Functions

sysconf returns the system-dependent size of a memory page. For portability,
applications should not embed any constants specifying the size of a page, and
instead should make use of sysconf to obtain that information. Note that it is
not unusual for page sizes to vary even among implementations of the same
instruction set, increasing the importance of using this function for portability.

mprotect has the effect of assigning protection 'prot to all pages in the range
laddr, addr + len). The protection assigned can not exceed the permissions
allowed on the underlying object. For instance, a read-only mapping to a file
that was opened for read-only access can not be set to be writable with mpro­
teet {unless the mapping is of the MAP _PRIVATE type, in which case the write

Memory Management 7-13

Memory Management Interfaces

access is permitted since the writes will modify copies of pages from the object,
and not the object itselO.

7-14 System Services and Application Packaging Tools

Address Space Layout

Traditionally, the address space of a UNIX process has consisted of exactly three
segments: one each for write-protected program code (text), a heap of dynami­
cally allocated storage (data), and the process's stack. Text is read-only and
shared, while the data and stack segments are private to the process.

System V Release 4 still uses text, data, and stack segments, though these should
be thought of as constructs provided by the programming environment rather
than by the operating system. As such, it is possible to construct processes that
have multiple segments of each "type," or of types of arbitrary semantic value
- no longer are programs restricted to being built only from objects the system
was capable of representing directly. For instance, a process's address space
may contain multiple text and data segments, some belonging to specific pro­
grams and some shared among multiple programs. Text segments from shared
libraries, for example, typically appear in the address spaces of many processes.
A process's address space is simply a vector of pages, and there is no necessary
division between different address-space segments. Process text and data spaces
are simply groups of pages mapped in ways appropriate to the function they
provide the program.

A process's address space is usually sparsely populated, with data and text
pages intermingled. The precise mechanics of the management of stack space is
machine-dependent. By convention, page 0 is not used. Process address spaces
are often constructed through dynamic linking when a program is exec'ed.
Operations such as exec and dynamic linking build upon the mapping opera­
tions described previously. Dynamic linking is described further in the
Programmer's Guide: ANSI C and Programming Support Tools.

While the system may have multiple areas that can be considered "data" seg­
ments, for programming convenience the system maintains operations to
operate on an area of storage associated with a process's initial"heap storage
area." A process can manipulate this area by calling brk and sbrk:

Memory Management 7-15

Address Space Layout

brk sets the system's idea of the lowest data segment location not used by the
caller to addr (rounded up to the next multiple of the system's page size).

sbrk, the alternate function, adds incr bytes to the caller's data space and
returns a pointer to the start of the new data area.

7-16 System Services and Application Packaging Tools

8 Packaging Application Software

An Overview of Software Packaging 8-1

Contents of a Package 8-2
Required Components 8-3
Optional Package Information Files 8-3
Optional Installation Scripts 8-4

The Structural Life Cycle of a Package 8-5

The Packaging Tools 8-6
The pkgmk Command 8-6
The pkgtrans Command 8-7
The pkgproto Command 8-8

The Installation Tools 8-9

The Package Information Files 8-10
The pkginfo File 8-10
The prototype File 8-11

• The Description Lines 8-12
• The Command Lines 8-14

The compver File 8-15

Table of Contents

Table of Contents ______________________ _

II

The copyright File
The depend File
The space File
The pkgmap File

The Installation Scripts
Script Processing
Installation Parameters
Getting Package Information for a Script
Exit Codes for Scripts
The Request Script

• Request Script Naming Conventions
• Request Script Usage Rules

The Class Action Script
• Class Action Script Naming Conventions
• Class Action Script Usage Rules
• Installation of Classes
• Removal of Classes

The Special System Classes
• The sed Class Script
• The awk Class Script
• The build Class Script

The Procedure Script
• Naming Conventions for Procedure Scripts
• Procedure Script Usage Rules

Basic Steps of Packaging

Assigning a Package Abbreviation

8-16
8-16
8-17
8-18

8-19
8-20
8-21
8-22
8-22
8-23
8-24
8-24
8-25
8-25
8-25
8-26
8-28
8-29
8-29
8-30
8-31
8-32
8-32
8-32

8-34

8-36

System Services and Application Packaging Tools

____________________ Table of Contents

Defining a Package Instance 8-37
Identifying a Package Instance 8-37
Accessing the Instance Identifier in Your Scripts 8-38

Writing Your Installation Scripts 8-39

Making Package Objects Relocatable 8-40
Defining Collectively Relocatable Objects 8-40
Defining Individually Relocatable Objects 8-41

Placing Objects into Classes 8-42

Defining Package Dependencies 8-43

Writing a Copyright Message 8-44

Reserving Additional Space on the
Installation Machine 8-45

Table of Contents iii

Table of Contents _____________________ _

Creating the pkginfo File 8-46

Creating the prototype File 8-47
Creating the File Manually 8-47

• Creating Links 8-47
• Mapping Development Pathnames to Installation Path names 8-48
• Defining Objects for pkgadd to Create 8-48
• Using the Command Lines 8-49

Creating the File Using pkgproto 8-49
• Creating a Basic prototype 8-50
• Assigning Objects to a Class 8-50
• Renaming Path names with pkgproto 8-51
• pkgproto and Links 8-52

Distributing Packages over Multiple
Volumes 8-53

Creating a Package with pkgmk 8-54
Creating a Package Instance 8-54
Helping pkgmk Locate Package Contents 8-54

Creating a Package with pkgtrans 8-56
Creating a Datastream Package 8-56
Translating a Package Instance 8-57

Quick Reference to Packaging Procedures 8-58

iv System Services and Application Packaging Tools

An Overview of Software Packaging

This chapter describes how to package software that will be installed on a com­
puter running UNIX System V Release 4. The approach to packaging in a
Release 4 environment differs from a pre-Release 4 environment. Pre-Release 4
packages deliver information to the system through script actions but a Release
4 package does this through package information files. A packaging tool, the
pkgmk command, is provided to help automate package creation. It gathers the
components of a package on the development machine, copies them onto the
installation medium, and places them into a structure that pkgadd recognizes.

This chapter also describes the installation tool, the pkgadd command, which
copies the package from the installation medium onto a system and performs
system housekeeping routines that concern the package. This tool is primarily
for the installer but is described here to provide you with a background on the
environment into which your packages will be placed and to help you test­
install your packages.

The next two sections describe what a package consists of and gives an over­
view of the structural life cycle of a package (how its structure on your develop­
ment machine relates to its structure on the installation medium and on the ins­
tallation machine).

The remaining sections familiarize you with all of the tools, files, and scripts
involved in creating a package, provide suggestions for how to approach
software packaging, and describe some specific procedures. After reading this
chapter, you should study Appendix C, which provides case studies using the
tools and techniques described in this chapter.

All of the commands, files, and functions mentioned in this chapter have
manual entries in Appendix B.

Packaging Application Software 8·1

Contents of a Package

A software package is made up of a group of components that together create
the software. These components naturally include the executables that comprise
the software, but they also include at least two information files and can option­
ally include other information files and scripts.

As shown in Figure 8-1, a package's contents fall into three categories:

• required components (the pkginfo file, the prototype file, package
objects>

• optional package information files

• optional packaging scripts

Figure 8-1: The Contents of a Package

8-2

Objects
can be

grouped
into

classes

Optional Package
Information Files

pkginfo

file
prototype

file

P ge

0
acka

bje cts

Optional Packaging
Scripts

System Services and Application Packaging Tools

Contents of a Package

Required Components

At the very least, a package must contain the following components:

• Package Objects

These are the objects that make up the software. They can be files (exe­
cutable or data), directories, or named pipes. Objects can be manipulated
in groups during installation by placing them into classes. You will learn
more about classes when reading the section ''Placing Objects into
Classes."

• The pkginfo File

The pkginfo file is a required package information file defining parameter
values that describe a package. For example, this file defines values for
the package abbreviation, the full package name, and the package archi­
tecture.

• The prototype File

The prototype file is a required package information file that lists the
contents of the package. There is one entry for each deliverable object
and this entry consists of several fields of information describing the
object. All package components, including the pkginfo file, must be
listed in the prototype file.

Both required package information files are described further in liThe Package
Information Files" section and on their respective manual entries in Appendix B.

Optional Package Information Files

There are four optional package information files that you can add to your
package:

• The compver File

Defines previous versions of the package that are compatible with this
version.

Packaging Application Software 8-3

Contents of a Package

• The depend File

Defines any software dependencies associated with this package.

• The space File

Defines disk space requirements for the target environment beyond that
used by objects defined in the prototype file (for example, files that will
be dynamically created at installation time).

• The copyright File

Defines the text for a copyright message that will be printed on the termi­
nal at the time of package installation or removal.

Every package information file used must have an entry in the prototype file.
All of these files are described further in the liThe Package Information Files"
section and on their respective manual entries in Appendix B.

Optional Installation Scripts

Your package can use three types of installation scripts, although no scripts are
required. Many of the tasks executed in a pre-Release 4 installation script are
now accomplished automatically by pkgadd. However, you may deliver scripts
with a Release 4 package to perform customized actions. An installation script
must be executable by sh (for example, a shell script or executable program).
The three script types are the request script (solicits installer input), class action
script (defines a set of actions to perform on a group of objects), and the pro­
cedure script (defines actions that will occur at particular points during installa­
tion).

Packaging scripts are described in detail in liThe Installation Scripts" section.
Example scripts can be found in Appendix C.

8-4 System Services and Application Packaging Tools

The Structural Life Cycle of a Package

The material covered in this chapter talks about package object pathnames. You
should keep in mind while reading that a package object will reside in three
places while being packaged and installed .. To help you avoid confusion, con­
sider which of the three possible locations are being discussed:

• On a development machine

Packages originate on a development machine. They can be in the same
directory structure on your machine as they will be placed on the installa­
tion machine. Or pkgmk can locate components on the development
machine and give them different pathnames on the installation machine.

• On the installation media

When pkgmk copies the package components from the development
machine to the installation medium, it pl~ces them into the structure you
have defined in your prototype file and a format that pkgadd recognizes.

• On the installation machine

pkqadd copies a package from the installation medium and places it in the
structure defined in your prototype file. Package objects can be defined
as relocatable, meaning the installer can define the actual location of these
package objects on the installation machine during installation. Objects
with fixed locations are copied to their predefined path.

Packaging Application Softwar. 8-5

The Packaging Tools

The packaging tools are provided to automate package creation and to remove
the burden of packaging from the developer. There are three packaging tools:

• pkgmk copies the components of a package from the development machine
to the installation medium and performs all necessary formatting. It
creates a fixed directory structure.

• pkgtrans translates an installable package from one package format to
another. The two format types are directory structure and datastream.
For example, pkgmk creates a directory structure. You would use
pkgtrans to translate a package already formatted as a directory structure
into a datastream format.

• pkgproto generates a prototype file based on the directory structure of
your development area.

Each of these commands is described in the following text and has a manual
entry in Appendix B.

The pkgmk Command

This command takes all of the package objects residing on the development
machine, copies them onto the installation medium, and places them into a fixed
directory structure. You are not required to know the details of the fixed direc­
tory structure since pkgmk takes care of the formatting. However, for your
information, Appendix D describes the two types of package formats supported
by these tools: a fixed directory structure and a datastream structure.

Files can be unstructured on the development machine and pkgmk will structure
them correctly on the medium based on information supplied in the prototype
file. The installation medium onto which a package is formatted can be what is
typically thought of as a medium (a diskette, for example) or it can be a direc­
tory on a machine.

pkgmk requires the presence of two information files on the development
machine, the prototype and the pkginfo file (other package information files
may be present). The pkginfo file defines the values for a number of package
parameters, such as the package abbreviation and the package name. The pro­
totype file provides a complete list of the package contents. pkgmk creates the

8·6 System Services and Application Packaging Tools

_______________________ The Packaging Tools

pkgmap file, which is the package contents file on the installation medium, by
processing the prototype file and then adding three fields to each entry.

pkgrnk follows these steps when processing a package:

1. Processes all of the command lines in the input prototype file. (proto­
type command lines can tell pkgmk where to look for package objects, to
merge another prototype into this one, define a default m:xle owner
group for package objects, and can place a parameter value in the packag­
ing environment.)

2. Copies the objects of a package onto the installation medium, using the
prototype file as a listing of contents.

3. Puts the package objects into the proper format.

4. Divides a package into pieces and distributes those pieces on multiple
volumes, if necessary.

5. Creates the pkgmap file (the content listing file that is placed on the instal­
lation medium). It looks like the prototype file except that all command
lines are processed, and the volno, size, cksum, and m:xltime fields are
added to each entry.

The pkgtrans Command

This command translates a package already created with pkgmk from one pack­
age format to another. It can make the following translations:

• a fixed directory structure to a datastream

• a datastream to a fixed directory structure

• a fixed directory structure to a fixed directory structure

Note that a package in a fixed directory structure can be in a directory on disk
(for example, in a spooling directory) or on a removable device such as a
diskette. A datastream can be on any device; for example, on a diskette or a
tape.

Packaging Application Software 8-7

The Packaging Tools

The pkgproto Command

This command generates a prototype file. It scans the paths specified on the
command line and creates description line entries for these paths. If the path­
name is a directory, an entry for each object in the directory is generated. You
can use the -c option of the pkgproto command to place objects into classes.

When you create a prototype file with an editor, it does not matter how pack­
age components are organized on your development machine. You use the
pathl=path2 pathname format to define where the files reside on your develop­
ment machine and where they should be placed on the installation machine.
However, when you use pkgproto to create your file, your development area
must be structured exactly as you wish your package to be structured.

8-8 System Services and Application Packaging Tools

The Installation Tools

The installation tools place the burden of installation on the system rather than
on the package being installed. These tools are introduced to you here so that
you can understand the environment into which your package will be placed.
Manual pages for these tools are provided in Appendix B so that you can use
them to test your package installation. The installation tools are:

III pkgadd installs a package.

III pkgrm removes a package.

III pkgask creates a file that contains an installer's response to prompts in the
request script. This file is named on the pkgadd command line when a
package is installed in noninteractive mode. It replaces the output of the
request script.

III pkgchk checks the content and attribute information for an installed pack­
age to ensure that it was not corrupted during installation.

III pkginfo and pkgparam display information about packages.

The system administrator can set parameters that control various aspects of ins­
tallation in an administration file called the admin file. Refer to the manual
entries in Appendix B for more information on these commands and on the
admin file.

Packaging Application Software 8-9

The Package Information Files

Each of the six package information files will be described in the following
pages. All of these files can be created using any editor. File formats are
described in the following text and in full detail on the respective manual entry
in Appendix B. The six package information files are:

• the pkginfo file

• the prototype file

• the compver file

• the copyright file

• the depend file

• the space file

This section also describes the system-generated pkgmap file, which pkgmk
creates and places on the installation medium. It is similar to the prototype
file.

The pkginfo File

This required package information file describes characteristics of the package,
such as the package abbreviation, full package name, package version, and
package architecture. The definitions in this file can set values for all of the ins­
tallation parameters defined in the pkginfo manual entry found in Appendix B.

Each entry in the file uses the following format to establish the value of a
parameter:

PARAM="value"

Figure 8-2 shows an example pkginfo file.

8-10 System Services and Application Packaging Tools

The Package Information Files

Figure 8-2: Sample pkginfo File

The pkginfo and pkgparam commands can be used to access information in a
pkginfo file.

Before defining the PKG, ARCH, and VERSION parameters, you need to know
how pkgadd defines a package instance and the rules associated with nam­
ing a package. Refer to the section "Defining a Package Instance" before
assigning values to these parameters.

The prototype File

This required package information file contains a list of the. package contents.
The pkgmk command uses the prototype file to identify the contents of a
package and their location on the development machine when building the
package.

You can create this file in two ways. As with all the package information files,
you can use an editor to create a file named prototype. It should contain
entries following the description given later in this chapter. You can also use
thepkgproto command to automatically generate the file. To make use of the
second method, you must have a copy of your package on your development
machine that is structured exactly as you want it structured on the installation
machine and all modes and permissions must be correct. If you are not going
to use pkgproto, you do not need a structured copy of your package.

Packaging Application Software 8-11

The Package Information Flies

There are two types of entries in the prototype file: description lines and
command lines.

The Description Lines
You must create one description line for each deliverable object that consists of
several fields describing the object. This entry describes such information as
mode, owner, and group for the object. You can also use this entry to accom­
plish the tasks listed below.

• You can override pkgmk's placement of an object on a multiple-part pack­
age. (Refer to the section "Distributing Packages over Multiple Volumes"
for more details.)

• You can place objects into classes. (Refer to the section ''Placing Your
Objects into Gasses" for details.)

• You can tell pkgmk where to find an object in your development directory
structure and map that name to the correct placement on the installation
machine. (Refer to the section "Mapping Development Pathnames to Ins­
tallation Pathnames" for details.)

• You can define an object as relocatable. (Refer to the section "Setting
Package Objects as Relocatable" for details.)

• You can define links. (Refer to the section "Creating the prototype File"
for details.)

The generic format of the descriptive line is:

[part] ftype class pathrtllme [major minor] [mode owner group]

Definitions for each field are as follows:

part

8-12

Designates the part in which an object should be
placed. A Plll2kage can be divided into a number of
parts. A part is a collection of files and is the atomic
unit by which a package is processed. A developer can
choose the criteria for grouping files into a part (for
example, by class). If not defined, pkgmk decides in
which part the object will be placed.

System Services and Application Packaging Tools

The Package Information Files

ftype Designates the file type of an object. Example file
types are f (a standard executable or data file), d (a
directory), 1 (a linked file), and i (a package informa­
tion file). (Refer to the prototype manual entry in
Appendix B for a complete list of file types.)

class Defines the class to which an object belongs. All
objects must belong to a class. If the object belongs to
no special class, this field should be defined·as none.

pathname Defines the pathname which an object should have on
the installation machine. If you do not begin this name
with a slash, the object is considered to be relocatable.
You can use the form pathl=path2 to map the loca­
tion of an object on your development machine to the
pathname it should have on the installation machine.

major/minor Defines the major and minor numbers for a block or
character special device.

model owner / group Defines the mode, owner, and group for an object. If
not defined, the defaults defined with the default
command are assigned. If not defined and there are
not defaults, the values 644 root other are used.

Figure 8-3 shows an example of this file with only description lines.

Figure 8-3: Sample #1 prototype File

Packaging Application Software 8-13

The Package Information Files

The Command Lines
There are four types of commands that can be embedded in the prototype file.
They are:

search pathnames Specifies a list of directories (separated by
white space) in which pkgmk should search
when looking for package objects. pathnames is
prepended to the basename of each object in
the prototype file until the object is located.

include filename Specifies the pathname of another prototype
file that should be merged into this one during
processing. (Note that search requests do not
span include files. Each prototype file
should have its own seC!-rch command
defined, if orie is needed.)

default mode owner group Defines the default mode owner group that
should be used if this information is not sup­
plied in a prototype entry that requires the
information. (The defaults do not apply to
entries in any include files. Each prototype
should have its own default command
defined, if one is needed.)

param=value Places the indicated parameter in the packag­
ing environment. This allows you to expand a
variable pathname so that pkgmk can locate the
object without changing the actual object path­
name. (This assignment will not be available
in the installation environment.)

A command line must always begin with an exclamation point (!). Commands
may have variable substitutions embedded within them.

Figure 8-4 shows an example prototype file with both description and com-
mand lines. .

8-14 System Services and Application Packaging Tools

___________________ The Package Informat/on Files

Figure 8-4: Sample #2 prototype File

The compver File

This package information file defines previous (or future) versions of the pack­
age that are compatible with this version. Each line in the file consists of a
string defining a version of the package with which the current version is com­
patible. The string must match the definition of the VERSION parameter in the
pkginfo file of the package considered to be compatible. Figure 8-5 shows an
example of this file.

Figure 8-5: Sample catpver File

Packaging Application Software 8·15

The Package Information Flies

The copyright File

This package information file contains the text of a copyright message that will
be printed on the terminal at the time of package installation or removal. The
display is exactly as shown in the file. Figure 8-6 shows an example of this file.

Figure 8-6: Sample copyright File

The depend File

This package information file defines software dependencies associated with the
package. You can define three types of package dependencies with this file:

• a prerequisite package (meaning this package depends on the existence of
another package)

• a reverse dependency (meaning another package depends on the existence
of this package)

• an incompatible package (meaning your package is incompatible with this
one)

The generic format of a line in this file is:

type pkg name
(arch) version
(arch) version

Definitions for each field are as follows:

8-16 System Services and Application Packaging Tools

The Package Information Flies

type Defines the dependency type. P indicates the named pack­
age is a prerequisite for installation. I indicates the named
package is incompatible. R indicates a reverse dependency,
that is, the named package requires that this package be on
the system. This last type should only be used when a
pre-Release 4 package (that cannot deliver a depend file)
relies on the newer package.

pkg Indicates the package abbreviation for the package.

name Specifies the full package name (used for display purposes
only).

(arch) version Defines a particular instance of a package by defining the
architecture and version. If (arch) version is not sup­
plied, it means the entry refers to any instance of the pack­
age.

Figure 8-7 shows an example of this file.

Figure 8-7: Sample depend File

The space File

This package information file defines disk space requirements for the target
environment beyond that which is used by objects defined in the prototype
file-for example, files that will be dynamically created at installation time. It
should define the maximum amount of additional space that a package will
require.

Packaging Application Software 8-17

The Package Information FIles

The generic format of a line in this file is:

pathnatne blocks inodes

Definitions for each field are as follows:

name

blocks

inodes

Names a directory in which there are objects that will
require additional space. The name may be the mount
point for a filesystem. Names that do not begin with a
slash (f) indicate relocatable directories.

Defines the number of 512 byte disk blocks required
for installation of the files and directory entries con­
tained in the pathname. (Do not include file system
dependent disk usage.)

Defines the number of inodes required for installation
of the files and directory entries contained in name.

Figure 8-8 shows an example of this file.

FIgure 8-8: Sample space File

The pkgmap File

The pkgmk command creates the pkgmap file when it processes the prototype
file. This new file contains all of the information in the prototype file plus
three new fields for each entry. These fields are size (file size in bytes), cksum
(checksum of file), and modtime (last time of modification). All command lines
defined in the prototype file are executed as pkgmk creates the pkgmap file.
The pkgmap file is placed on the installation medium. The prototype file is
not. Refer to the pkgmap manual entry in Appendix B for more details about
this file.

8-18 System Services and ApplicatIon PackagIng Tools

The Installation Scripts

The pkqadd command automatically performs all of the actions necessary to
install a package, using the package information files as input. As a result, you
do not have to supply any packaging scripts. However, if you want to custom­
ize the installation procedures for your package needs, the following three types
of scripts can be used:

request script Solicits administrator interaction during package instal­
lation for the purpose of assigning or redefining
environment parameter assignments.

class action scripts

procedure scripts

Define an action or set of actions that should be
applied to a class of files during installation or remo­
val. You define your own classes or you can use one
of three standard classes (sed, awk, and build). See
the "Placing Objects into Gasses" section for details on
how to define a class.

Specifies a procedure to be invoked before or after the
installation or removal of a package. The four pro­
cedure scripts are preinstall, post install,
pre remove, and post remove.

You decide which type of script to use basep on when you want the script to
execute. To help you with this assessment, script processing is discussed next,
followed by a description of parameters available to packaging scripts, how to
get information about a package for your scripts, and script exit codes.· After
that, each type of script is described in detail.

All installation scripts must be executable by sh (for example, a shell script
or a program executable).

Packaging Application Software

The Installation Scripts

Script Processing

You ~n customize the actions taken during installation by delivering installa­
tion scripts with your package. The decision on which type of script to use to
meet a need depends upon when the action of the script is needed during the
installation process. As a package is installed, pkgadd performs the following
steps:

• Executes the request script.

This is the only point at which your package can solicit input from the
installer.

• Executes the pre install script.

• Installs the package objects.

Installation occurs class-by-class and class action scripts are executed
accordingly. The list of classes operated upon and the order in which
they should be installed is initially defined with the CLASSES parameter
in your pkginfo file. However, your request script can change the value
of CLASSES.

• Executes the post install script.

When a package is being removed, pkgrm performs these steps:

• Executes the pre remove script.

• Executes the removal class action scripts.

Removal also occurs class-by-class. As with the installation class action
scripts, if more than one removal script exists, they are processed in the
reverse order in which the classes were listed in the CLASSES parameter
at ~he time of installation.

• Executes the postremove script.

The request script is not processed at the time of package removal. However,
its output (a list of parameter values) is saved and so is available to removal
scripts.

8-20 System Services and Application Packaging Tools

The Installation Scripts

Installation Parameters

These following four groups of ~ameters are available to all installation
scripts. Some of the parameters can be modified by a request script, others can-
not be modified at all. .

• The four system parameters that are part of the installation software (see
below for a description of these). None of these parameters can be
modified by a package.

• The 20 s"mq~~~ installation parameters defined in the pkqinfo file. Of
these, a Ail . ,... . can only modify the CLASSES parameter. (The standard
installation eters are described in detail in the pkqinfo manual
entry in Appendix B.)

• You can define your own installation pClrameters by assigning a value to
them in the pkqinfo file. Such a parameter must be alphanumeric with
an initial capital letter. Any of these parameters can be changed by a
request script.

• Your request script can define new parameters by assigning values to
them and placing them into the installation environment, as shown in fig­
ure 8-9.

The four installation parameters that can be accessed by installation scripts are
described below:

PATH

UPDATE

PKGINST

Specifies the search list used by sh to find commands;
on script invocation, PATH is set to
/sbin:/usr/sbin:/usr/bin:/usr/sadm/instal~/bin.

Indicates that the current installation is intended to
update the system. AutollUJ.tically set to true if the
package being installed is overwriting a version of
itself.

Specifies the instance identifier of the package being
installed. If another instance of the package is not
already installed, the value will be the. package abbre­
viation. Otherwise, it is the package abbreviation fol­
lowed by a suffix, such as pkg. 1.

Packaging Application Software 8-21

The Installation Scripts

PKGSAV

(Multiple variations of the same package can reside
Simultaneously on the installation medium, as well as
on the installation machine. Each variation is known
as a package instance and assigned an instance
identifier. See "Defining a Package Instance" for more
details.)

Specifies the directory where files can be saved for use
by removal scripts or where previously saved files may
be found.

Getting Package Information for a Script

There are two commands that can be used from your scripts to solicit informa­
tion about a package.

The pkginfo command returns information about software packages, such as
the instance identifier and package name.

The pkgparam command returns values only for the parameters requested.

The pkginfo and pkgparam [(1) and (4)] manual entries in Appendix B give
details for these tools.

Exit Co.des for Scripts

Each script must exit with one of the following exit codes:

o Successful completion of script.

1 Fatal error. Installation process is terminated at this point.

2 Warning or possible error condition. Installation will continue. A
warning message will be displayed at the time of completion.

3 Script was interrupted and possibly left unfinished. Installation ter­
minates at this point.

8-22 System Services and Application Packaging Tools

_____________________ The Installation Scripts

10 System should be rebooted when installation of all selected packages is
completed. (This value should be added to one of the single-digit exit
codes described above.)

20 The system should be rebooted immediately upon completing installa­
tion of the current package. (This value should be added to one of the
single-digit exit codes described above.)

See Appendix C for examples of exit codes in installation scripts.

The Request Script

The request script solicits interaction during installation and is the only place
where your package can interact directly with the installer. It can be used, for
example, to ask the installer if optional pieces of a package should be installed.

The output of a request script must be a list of parameters and their values.
This list can include any of the parameters you created in the pkginfo file and
the CLASSES parameter. The list can also introduce parameters that have not
been defined elsewhere.

When your request script assigns values to a parameter, it must then make
those values available to the installation environment for use by pkgadd and
also by other packaging scripts. The following example shows a request script
segment that performs this task for the four parameters CLASSES, NCMPBIN,
EMACS, and NCMPMAN.

Packaging Application Software 8-23

The Installation Scripts

Figure 8-9: Placing Parameters Into the Installation Environment

Request Script Naming Conventions
There can only be one request script per package and it must be named
request.

Request Script Usage Rules
1. The request script can not modify any files. It is intended only to interact

with users and to create a list of parameter assignments based upon that
interaction. (To enforce this restriction, the request script is executed as
the nonprivileged user install.)

2. pkqadd calls the request script with one argument that names the file to
which the output of this script will be written.

3. The parameter assignments should be added to the installation environ­
ment for use by pkqadd and other packaging scripts (as shown in Figure
8-9).

4. System parameters and standard installation parameters, except for the
CLASSES parameter, cannot be modified by a request script. Any of the
other parameters available can be changed.

5. The format of the output list should be PARAMETER= "value " . For exam­
ple:

CLASSES="none classl"

8-24 System Services and Application Packaging Tools

The Installation Scripts

6. The list should be written to the file named as the argument to the
request script.

7. The user's terminal is defined as standard input to the request script.

8. The request script is not executed during package removal. However, the
parameter values assigned in the script are saved and are available during
removal.

The Class Action Script

The class action script defines a set of actions to be executed during installation
or removal of a package. The actions are performed on a group of pathnames
based on their class definition. (See Appendix C for examples of class action
scripts.)

Class Action Script Naming Conventions
The name of a class action script is based on which class it should operate and
whether those actions should occur during package installation or removal. The
two name formats are:

• i. class (operates on patbnames in the indicated class during package ins­
tallation)

, • r. class (operates on pathnames in the indicated class during package
removal)

For example, the name of the installation script for a class named class!
would be i. class! and the removal script would be named r. class!.

Class Action Script Usage Rules
1. Class action scripts are executed as uid=root and gid=other.

2. If a package spans more than one volume, the class action script will be
executed once for each volume that contains at least one file belonging to
the class. Consequently, each script must be "multiply executable." This
means that executing a script any number of times with the same input
must produce the same results as executing the script only once.

Packaging Application Software 8-25

The Installation Scripts

The installation service relies upon this condition being met.

3. The script is not executed if no files in the given class exist on the current
volume.

4. pkqadd (and pkqrm) creates a list of all objects listed in the pkqmap file
that belong to the class. As a result, a class action script can only act
upon pathnames defined in the pkqmap and belonging to a particular
class.

5. A class action script should never add, remove, or modify a pathname or
system attribute that does not appear in the list generated by pkqadd
unless by use of the installf or removef command. (See the manual
entries in Appendix B for details on these two commands and the case
studies in Appendix C for examples of them in use.)

6. When the class action script executes for the last time (meaning the input
pathname is the last path on the last volume containing a file of this
class), it is executed with the keyword argument ENDOFCLASS. This flag
allows you to include post-processing actions into your script.

Installation of Classes

The following steps outline the system actions that occur when a class is
installed. The actions are repeated once for each volume of a package as that
volume is being installed.

1. pkqadd creates a pathname list.

8-26

pkqadd creates a list of patbnames upon which the action script will
operate. Each line of this list consists of source and destination path­
names, separated by white space. The source pathname indicates where
the object to be installed resides on the installation volume and the desti­
nation pathname indicates the location on the installation machine where
the object should be installed. The contents of the list is restricted by the
following criteria:

System Services and Application Packaging Tools

The Installation Scripts

• The list contains only pathnames belonging to the associated
class.

• Directories, named pipes, character Iblock devkes, and symbolic
links are included in the list with the source pathname set to
/dev/null. They are automatically created by pkgadd (if not
already in existence) and given proper attributes (mode, owner,
group) as defined in the pkgmap file.

• Linked files are not included in the list, that is, files where
ftype is 1. (ftype defines the file type and is defined in the
prototype file. Links in the given class are created in Step 4.)

• If a pathname already exists on the target machine and its con­
tents are no different from the one being installed, the pathname
will not be included in the list.

To determine this, pkgadd compares the cksum, modtime, and
size fields in the installation software database with the values
for those fields in your pkgmap file. If they are the same, it then
checks the actually file on the installation machine to be certain it
really has those values. If the field values are the same and are
correct, the pathname for this object will not be included in the
list.

2. If there is no class action script, the pathnames are copied to the target
machine.

If no class action script is provided for installation of a particular class,
the pathnames in the generated list will simply be copied from the
volume to the appropriate target location.

3. If there is a class action script, the script is executed.

The class action script is invoked with standard input containing the list
generated in Step 1. If this is the last volume of the package and there
are no more objects in this class, the script is executed with the single
argument of ENDOFCLASS.

Packaging Application Software 8-27

The Installation Scripts

4. pkgadd performs a content and attribute audit and creates links.

After successfully executing Step 2 or 3, an audit of both content and
attribute information is performed on the list of pathnames. pkgadd
creates the links associated with the class automatically. Detected attri­
bute inconsistencies are corrected for all pathnames in the generated list.

Removal of Classes
Objects are removed class-by-class. Classes that exist for a package, but are not
listed in the CLASSES parameter are removed first (for example, an object
installed with the installf command). Classes that are listed in the CLASSES
parameter are removed in reverse order. The following steps outline the system
actions that occur when a class is removed:

1. pkgrm creates a pathname list.

pkgrm creates a list of installed pathnames that belong to the indicated
class. Pathnames referenced by another package are excluded from the
list unless their ftype is e (meaning the file should be edited upon instal­
lation or removal).

If a pathname is referenced by another package, it will not be removed
from the system. However, it may be modified to remove information
placed in it by the package being removed.

2. If there is no class action script, the pathnames are removed.

If your package has no removal class action script for the class, all of the
pathnames in the list generated by pkgrm will be removed.

liI'1 Vou should always assign a class 1m files wnh an ftype 01 e (edn­
ijQf~ able) and have an associated class action script for that class. Oth-) :~~~d ~~ ;~~~~~~~~~~ at this point, even if the pathname is

3. If there is a class action script, the script is executed.

8-28

pkgrm invokes the class action script with standard input containing the
list generated in Step 1.

System Services and Application Packaging Tools

______________________ The Installation Scripts

4. pkgrm performs an audit.

Upon successful execution of the class action script, knowledge of the
pathnames is removed from the system unless a pathname is referenced
by another package.

The Special System Classes

The system provides three special classes. They are:

• The sed class (provides a method for using sed instructions to edit files
upon installation and removal).

• The awk class (provides a method for using awk instructions to edit files
upon installation and removal).

• The build class (provides a method to dynamically construct a file dur­
ing installation).

The sed Class Script
The sed installation class provides a method of installing and removing objects
that require modification to an existing object on the target machine. A sed
class action script delivers sed instructions in the format shown in Figure 8-10.
You can give instructions that will be executed during either installation or
removal. Two commands indicate when instructions should be executed. sed
instructions that follow the ! install co:mmand are executed during package
installation and those that follow the ! remove command are executed during
package removal. It does not matter in which order the commands are used in
the file.

The sed class action script executes automatically at installation time if a file
belonging to class sed exists. The name of the sed class file should be the same
as the name of the file upon which the instructions will be executed.

Packaging Application Software 8-29

The Installation Scripts

Figure 8-10: sed Script Format

address, function, and arguments are as defined in the manual entry sed(1) in the
User's Reference Manual. See Case Studies Sa and Sb in Appendix C for exam­
ples of sed class action scripts.

The awk Class Script

The awk installation class provides a method of installing and removing objects
that require modification to an existing object on the target machine.
Modifications are delivered as awk instructions in an awk class action script.

The awk class action script executes automatically at the time of installation if a
file belonging to class awk exists. Such a file contains instructions for the awk
class script in the format shown in Figure 8-11. Two commands indicate when
instructions should be executed. awk instructions that follow the ! install
command are executed during package installation and those that follow the
! remove command are executed during package removal. It does not matter in
which order the coriunands are used in the file.

The name of the awk class file should be the same as the name of the file upon
which the instructions will be executed.

System Services and Application Packaging Tools

The Installation Scripts

Figure 8-11: awk Script Format

The file to be modified is used as input to awk and the output of the script ulti­
mately replaces the original object. Parameters may not be passed to awk using
this syntax.

See Case Study Sa in Appendix C for example awk class action scripts.

The build Class Script

The build class installs or removes objects by executing instructions that create
or modify the object file. These instructions are delivered as a build class
action script.

The name of the instruction file should conform to standard UNIX system nam­
ing conventions.

The build class action script executes automatically at installation time if a file
belonging to class build exists.

A build script must be executable by sh. The script's output becomes the new
version of the file as it is built.

See Case Study Sc in Appendix C for an example build class action script.

Packaging Application Software 8-31

The Installation Scripts

The Procedure Script

The procedure script gives a set of instructions that are performed at particular
points in installation or removal. Four possible procedure scripts are described
below. (Appendix C shows examples of procedure scripts.)

Naming Conventions for Procedure Scripts
The four procedure scripts must use one of the names listed below, depending
on when these instructions are to be executed.

• preinstall (executes before class installation begins)

• post install (executes after all volumes have been installed)

• pre remove (executes before class removal begins)

• post remove (executes after all classes have been removed)

Procedure Script Usage Rules
1. Procedure scripts are executed as uid-root and qid-other.

2. Each script should be multiply executable since it will be executed once
for each volume in a package. This means that executing a script any
number of times with the same input will produce the same results as
executing the script only once.

3. Each installation procedure script must use the installf command to
notify pkqadd that it will add or modify a pathname. After all additions
or modifications are complete, this command should be invoked with the
-f option to indicate all additions and modifications are complete. (See
the manual entry for the installf command in Appendix B and the
case studies in Appendix C for details and examples.)

4. Each removal procedure script must use the removef command to notify
pkqrm that it will remove a pathname. After removal is complete, this
command should be invoked with the -f option to indicate all removals
have been completed. (See the manual entry for the removef command
in Appendix B and the case studies in Appendix C for details and exam­
ples.)

8-32 System Services and Application Packaging Tools

The Installation Scripts

The installf and removef commands must be used because procedure
scripts are not automatically associated with any pathnames listed in the
pkqmap file.

Packaging Application Software 8-33

Basic Steps of Packaging

Since what steps you take to create a package depends on how customized your
package will be, it is difficult to give you a step-by-step guide on how to
proceed. Your first step should be to plan your packaging. For example you
must decide on which package information files and scripts your package needs.

The following list presents an overview of some of the steps you might use in a
packaging scenario. Not all of these steps are required and there exists no man­
dated order for their execution (although you must have all of your package
objects together before executing pkgmk). The remainder of this chapter gives
procedural information for each step.

This list, and the following procedures, are intended as a guideline and
should not replace reading the rest of this chapter to learn what options are
available to your package or replace your own individualized planning.

• Assign a package abbreviation.
Every package installed in the Release 4 environment must have a pack­
age abbreviation.

• Define a package instance.
You must decide on values for the three package parameters that will
make each package instance unique. (You need to understand what a
package instance is, how it is defined, what the instance identifier is, and
how to use that identifier. All of this is covered in the procedure
"Defining a Package Instance.")

• Place your objects into classes.
You must decide on what installation classes you are going to use before
you can create the prototype file and also before you can write your
class action scripts.

• Set up a package and its objects as relocatable.

8-34

Package objects can be delivered with either fixed locations, meaning that
their location is defined by the package and cannot be changed, or with
relocatable locations, meaning that they have no absolute location require­
ments. All of a package or parts of a package can be defined as relocat­
able. You should decide if package objects will have fixed locations or be
relocatable before you write any installation scripts and before you create
the prototype file.

System Services and Application Packaging Tools

Basic Steps of Packaging

• Decide which installation scripts your package needs.
You must assess the needs of your package beyond-the actions provided
by pkgadd and decide on which type of installation scripts will allow you
to deliver your customized actions.

• Define package dependencies
You must decide if your package has dependencies on other packages and
if any other packages depend on yours.

• Write a copyright message.
You must decide if your package requires a copyright message to appear
as it is being installed (and removed) and, if so, you must write that mes­
sage.

• Create the pkginfo file.
You must create a pkginfo file before executing pkgmk.. It defines basic
information concerning the package and can be created with any editor as
long as it follows the format described earlier in this chapter and in the
pkginfo manual entry in Appendix B.

• Create the prototype file.
This file is required and must be created before you execute pkgmk. It
lists all of. the objects that belong to a package and information about each
object (such as its file type and to which class it belongs). You can create
it using any editor and you must follow the format described earlier in
this chapter and in the prototype manual entry in Appendix B. You can
also use the pkgproto conunand to generate a prototype file.

• Distribute packages over multiple volumes.
pkgmk automatically distributes packages over multiple volumes. You
must decide if you want to leave those calculations up to pkgmk or cus­
tomize package placement on multiple volumes.

• Create the package.
Create the package using the pkgmk command, which copies objects from
the development machine to the installation medium, puts them into the
proper structure, and automatically spans them across multiple volumes,
if necessary .

. This is always the last step of packaging, unless you want to create a
datastream structure for your package. If so, you must execute pkgtrans
after creating a package with pkgmk.

Packaging Application Software 8-35

Assigning a Package Abbreviation

Each package installed on a Release 4 machine must have a package abbrevia­
tion assigned to it. This abbreviation is defined with the PKG parameter in the
pkginfo file.

A valid package abbreviation must meet the criteria defined below:

• It must start with an alphabetic character.

• Additional characters may be alphanumeric and contain the two special
characters + and -.

• It cannot be longer than nine characters.

• Reserved names are install, new, and all.

8-36 System Services and Application Packaging Tools

Defining a Package Instance

The same software package can differ by version or architecture or both. Multi­
ple variations of the same package can reside simultaneously on the same
machine. Each variation is known as a package instance. pkqadd assigns a
package identifier to each package instance at the tittle of installation. The pack­
age identifier is the package abbreviation with a numerical suffix. This
identifier distinguishes an instance from any other package, including other
instances of the same package.

Identifying a Package Instance

Three parameters defined in the pkqinfo file combine to uniquely identify each
instance. You cannot assign identical values for all three parameters for two
instances of the same package installed in the same target environment. These
parameters are:

• PKG (defines the software package abbreviation and remains constant for
every instance of a package)

• VERSION (defines the software package version)

• ARCH (defines the software package architecture)

For example, you might identify two identical versions of a package that run on
different hardware as:

Instance #1

PKG-"abbr"
VERSION="release 1"
ARCH="3B20"

Instance #2

PKG-"abbr"
VERSION="release 1"
ARCH="3B2"

Two different versions of a package that run on the same hardware might be
identified as:

PackagIng Application Software 8-37

Defining a Package Instance

Instance #1

PKG-"abbr"
VERSION"'"release 1"
ARCH-"3B2"

Instance #2

PKG-"abbr"
VERSION-"release 2"
ARCH"'"3B2"

The instance identifier, assigned by pkqadd, maps the three pieces of informa­
tion that identify an instance to one name consisting of the package abbreviation
plus a suffix. The first instance of a package installed on a system does not
have a suffix and so its instance identifier will be the package abbreviation.
Subsequent instances receive a suffix, beginning with .2. An instance is given
the lowest integer extension available and so may not correspond to the order in
which a package was installed. For example, if mypkq. 2 was deleted after
mypkq. 3 was installed, the next instance to be added will be named mypkq. 2.
Because the number of instances of a particular package can vary from machine
to machine, the instance identifier can also vary.

pkgmk also assigns an instance identifier to a package as it places it on the
installation medium if one or more instances of a package already exists.
That identifier bears no relationship to the identifier assigned to the same
package on the installation machine.

Accessing the Instance Identifier in Your Scripts

Because the instance identifier is assigned at the time of installation and will
differ from machine to machine, you should use the PKGINST system parameter
to reference your package in your installation scripts.

f /
(

8-38 System Services and Application Packaging Tools

Writing Your Installation Scripts

You should read the section liThe Installation Scripts" to learn what types of
scripts you can write and how to write them. You can also look at the case stu­
dies in Appendix C to see how the various scripts can be utilized and to see
examples.

Remember, you are not required to write any installation scripts for a Release 4
package. The pkgadd command performs all of the actions necessary to install
your package, using the information you supply with the package information
files. Any installation script that you write will be used to perform customized
actions beyond those executed by pkgadd.

Be certain that every installation script being delivered with your package
has an entry in the prototype file. The file type should be i.

Packaging Application Software 8-39

Making Package Objects Relocatable

Package objects can be delivered either with fixed locations, meaning that their
location on the installation machine is defined by the package and cannot be
changed, or as relocatable, meaning that they have no absolute location require­
ments on the installation machine. The location for relocatable package objects
is determined during the installation process.

You can define two types of relocatable objects: collectively relocatable and
individually relocatable. All collectively relocatable objects are placed relative to
the same directory once the relocatable root directory is established. Individu­
ally relocatable objects are not restricted to the same directory location as collec­
tively relocatable objects.

Defining Collectively Relocatable Objects,

Follow these steps to define package objects as collectively relocatable:

1. Define a value for the BASEDIR parameter.

Put a definition for the BASEDIR parameter in your pkginfo file. This
parameter names a directory where relocatable objects will be placed by
default. If you supply no value for BASEDIR, no package objects will be
considered as collectively relocatable.

2. Define objects as collectively relocatable in the prototype file.

An object is defined as collectively relocatable by using a relative path­
name in its entry in the prototype file. A relative pathname does not
begin with a slash. For example, src/myfile is a relative pathname,
while / src/myfile is a fixed pathname.

~~

A package can deliver some objects with relocatable locations and
others with fixed locations.

All objects defined as collectively relocatable will be put under the same root
directory on the installation machine. The root directory value will be one of
the following (and in this order):

System Services and Application Packaging Tools

_________________ Making Package Objects Relocatable

• the installer's response to pkgadd when asked where relocatable objects
should be installed

• the value of BASEDIR as it is defined in the installer'S admin file (the
BASEDIR value assigned in the admin file overrides the value in the
pkginfo file)

• the value of BASEDIR as it is defined in your pkginfo file (this value is
used only as a default in case the other two possibilities have not supplied
a value)

Defining Individually Relocatable Objects

A package object is defined as individually relocatable by using a variable in its
pathname definition in the prototype file. Your request script must query the
installer on where such an object should be placed and assign the response
value to the variable. pkgadd will expand the pathnarne based on the output of
your request script at the time of installation. Case Study 1 in Appendix C
shows an example of the use of variable pathnarnes and the request script

. needed to solicit a value for the base directory.

Packaging Application Software

Placing Objects into Classes

Installation classes allow a series of actions to be performed on a group of pack­
age objects at the time of their installation or removal. You place objects into a
class in the prototype file. All package objects must be given a class, although
the class of none may be used for objects that require no special action.

The installation parameter CLASSES, defined in the pkqinfo file, is a list of
classes to be installed (including the none class). Objects defined in the proto­
type file that belong to a class not listed in this parameter will not be installed.
The actions to be performed on a class (other than simply copying the com­
ponents to the installation machine) are defined in a class action script. These
scripts are named after the class itself.

For example, to define and install a group of objects belonging to a class named
classl, follow these steps:

1. Define the objects belonging to classl as such in their prototype file
entry. For example,

f classl /usr/src/myfile
f classl /usr/src/myfile2

2. Ensure that the CLASSES parameter in the pkqinfo file has an entry for
classl. For example,

CLASSES="classl class2 none"

3. Ensure that a class action script exists for this class. An installation script
for a class named classl would be named i. classl and a removal
script would be named r. classl.

If you define a class but do not deliver a class action script, the only
action taken for that class will be to copy components from the installa­
tion medium to the installation machine.

In addition to the classes that you can define, the system provides three stan­
dard classes for your use. The sed class provides a method for using sed
instructions to edit files upon package installation and removal. The awk class
provides a method for using awk instructions to edit files upon package installa­
tion and removal. The build class provides a method to dynamically construct
a file during package installation.

8-42 System Services and Application Packaging Tools

Defining Package Dependencies

Package dependencies and incompatibilities can be defined with two of the
optional package information files. Delivering a compver file lets you name
versions of your package that are compatible with the one being installed.
Delivering a depend file lets you define three types of dependencies associated
with your package. These dependency types are:

• a prerequisite package (meaning your package depends on the existence
of another package)

• a reverse dependency (meaning another package depends on the existence
of your package)

• an incompatible package (meaning your package is incompatible with this
one)

Refer to the sections "The depend File" and "The compver File" earlier in this
chapter, or the manual entries depend and compver in Appendix B, for details
on the formats of these files.

Packaging Application Software 8-43

Writing a Copyright Message

To deliver a copyright message, you must create a copyright file named copy­
right. The message will be displayed exactly as it appears in the file (no for­
matting) as the package is being installed and as it is being removed. Refer to
the section ''The copyright File" earlier in this chapter or the copyright
manual entry in Appendix B for more detail.

Be certain that your copyright file has an entry in the prototype file. Its
file type should be i (for package information file).

System Services and Application Packaging Tools

Reserving Additional Space on the Installation
Machine

pkgadd assures that there is enough disk space to install your package, based
on the object definitions in the pkgmap file. However, sometimes your package
will require additional disk space beyond that needed by the objects defined in
the pkgmap file. For example, your package might create a file during installa­
tion. pkgadd checks for additional space when you deliver a space file with
your package. Refer to the section "The space File" earlier in this chapter or
the space manual entry in Appendix B for details on the format of this file.

1 .•. './ ..•.•.•. 1 ..•...••. '.· •• , •..• ···.1 a. corta.in that your space file. has an ~ntry. in the prototype file. Its file filot!; type should be i (for package information file).
r~Y)?/~\ '

Packaging Application Software 8-45

Creating the pkginfo File

The pkqinfo file establishes values for parameters that describe the package
and is a required package component. The format for an entry in this file is:

PARAM="value"

PARAM can be any of the 19 standard parameters described in the pkqinfo
manual entry in Appendix B. You can also create your own package parame­
ters simply by assigning a value to them in this file. Your parameter names
must begin with a capital letter followed by either upper or lowercase letters.

The following five parameters are required:

• PKG (package abbreviation)

• NAME (full package name)

• ARCH (package architecture)

• VERSION (package version)

• CATEGORY (package category)

The CLASSES parameter dictates which classes are installed and the order of
installation. Although the parameter is not required, no classes will be installed
without it. Even if you have no class action scripts, the none class must be
defined in the CLASSES parameter before objects belonging to that class will be
installed.

1/ ... /
1

." .•.•••.•. 1 You can ~hoose to define the value of CLASSES with a request script and
Npts: not to dehver a value In the pkginfo file.

:~: ~j j~ ~~j~j~j~jjjjjj~~jjj

8-46 System Services and Application Packaging Tools

Creating the prototype File

The prototype file is a list of package contents and is a required package com­
ponent.

You can create the prototype file by using any editor and following the for­
mat described in the section "The prototype File" and in the prototype
manual entry in Appendix B. You can also use the pkgproto command to
create one automatically.

Creating the File Manually

While creating the prototype file, you must at the very least supply the fol­
lowing three pieces of information about an object:

• The object's type

All of the possible object types are defined in the prototype manual
entry in Appendix B. f (for a data file), 1 (for a linked file), and d (for a
directory) are examples of object types.

• The object's class

All objects must be assigned a class. If no special handling is required,
you can assign the class none.

• The object's pathname

The pathname can define a fixed pathname such as
/mypkg/arc/filename, a collectively relocatable pathname such as
arc/filename, and an individually relocatable pathname such as
$BIN/filename or /opt/$PKGINST/filename.

Creating links

To define links you must do the following in the prototype entry for the
linked object:

1. Define its ftype as 1 (a link) or a (a symbolic link).

2. Define its pathname with the format pathl=path2 where pathl is the desti­
nation and path2 is the source file.

Packaging Application Software 8-47

Creating the prototype File

Mapping Development Pathnames to Installation Pathnames
If your development area is in a different structure than you want the package
to be in on the installation machine, you can use the prototype entry to map
one pathname to the other. You use the pathl=path2 format for the pathname as
is used to define links. However, if the ftype is not defined as 1 or s, pathl is
interpreted as the pathname you want the object to have on the installation
machine and path2 is interpreted as the pathname the object has on your
development machine.

For example, your project might require a development structure that includes a
project root directory and numerous src directories. However, on the installa­
tion machine you might want all files to go under a package root directory and
for all src files to be in one directory. So, a file on your machine might be
named /projdir/srcA/filename. If you want that file to be named
/pkgroot/src/filename on the installation machine, your prototype entry
for this file might look like this:

f class! /pkgroot/src/filename=/projdir/srcA/filename

Defining Objects for pkgadd to Create
You can use the prototype file to define objects that are not actually delivered
on the installation medium. pkgadd creates objects with the following ftypes
if they do not already exist at the time of installation:

• d (directories)

• x (exclusive directories)

• 1 (linked files)

• s (symbolically linked files)

• p (named pipes)

• c (character special device)

• b (block special device)

To request that one of these objects be created on the installation machine, you
should add an entry for it in the prototype file using the appropriate ftype.

System Services and Application Packaging Tools

Creating the prototype File

For example, if you want a directory created on the installation machine, but do
not want to deliver it on the installation medium, an entry for the directory in
the prototype file is sufficient. An entry such as the one shown below will
cause the directory to be created on the installation machine, even if it does not
exist on the installation medium.

d none /directoryA 644 root other

Using the Command Lines
There are four types of commands that you can put into your prototype file.
They allow you to do the following:

• Nest prototype files (the include command)

• Define directories for pkgrnk to look in when attempting to locate objects
as it creates the package (the search command)

• Set a default value for mode owner group (the default command). If
all or most of your objects have the same values, using the default com­
mand will keep you from having to define these values for every entry in
the prototype file.

• Assign a temporary value for variable pathnames to tell pkgrnk where to
locate these relocatable objects on your machine (with param=value)

Creating the File Using pkgproto

The pkgproto command scans your directories and generates a prototype
file. pkgproto cannot assign ftypes of v (volatile files), e (editable files), or x
(exclusive directories). You can edit the prototype file and add these ftypes,
as well as perform any other fine-tuning you require (for example, adding com­
mand lines or classes).

pkgproto writes its output to the standard output. To create a file, you should
redirect the output to a file. The examples shown in this section do not perform
redirection in order to show you what the contents of the file would like.

Packaging Application Software 8-49

Creating the prototype File

Creating a Basic prototype

The standard format of pkqproto is

pkqproto path [...]

where path is the name of one or more paths to be included in the prototype
file. If path is a directory, then entries are created for the contents of that direc­
tory as well.

With this form of the command, all objects are placed into the none class and
are assigned the same mode owner group as exists on your machine. The fol­
lowing example shows pkqproto being executed to create a file for all objects
in the directory /usr/bin:

To create a prototype file that contains the output of the example above, you
would execute pkqproto /usr/bin > prototype

H no pathnames are supplied when executing pk9Proto. standard in (stdin)
is assumed to be a list of paths. Refer to the pk9Proto manual entry in
Appendix B for details on this usage.

Assigning Objects to a Class

You can use the -c class option of pkqproto to assign objects to a class other
than none. When using this option, you can only name one class. To define
multiple classes in a prototype file created by pkqproto, you must edit the
file after its creation.

8-50 System Services and Application Packaging Tools

Creating the prototype File

The following example is the same as above except the objects have been
assigned to class!.

Renaming Path names with pkgproto

You can use a pathl=path2 format on the pkgproto command line to give an
object a different pathname in the prototype file than it has on your machine.
You can, for example, use this format to define relocatable objects in a proto­
type file created by pkgproto.

The following example is like the others shown in this section, except that the
objects are now defined as bin (instead of /usr/bin) and are thus relocatable.

Packaging Application Software 8-51

Creating the prototype File

pkgproto and Links

pkgproto detects linked files and creates entries for them in the prototype
file. If multiple files are linked together, it considers the first path encountered
the source of the link.

If you have symbolic links established on your machine but want to generate an
entry for that file with an ftype of f (file), then use the -i option of
pkgproto. This option creates a file entry for all symbolic links.

8-52 System Services and Application Packaging Tools

Distributing Packages over Multiple Volumes

As packager, you no longer need to worry about placing package components
on multiple volumes. pkgmk performs the calculations and actions necessary to
organize a multiple volume package. As pkgmk creates your package, it will
prompt you to insert a new volume as often as necessary to distribute the com­
plete package over multiple volumes.

However, you can use the optional part field in the prototype file to define
in which part you want an object to be placed. A number in this field overrides
pkgmk and forces the placement of the component into the part given in the
field. Note again that there is a one-to-one correspondence between parts and
volumes for removable media formatted as file systems.

Packaging Application Software 8-53

Creating a Package with pkgmk

pkgmk takes all of the objects on your machine (as defined in the prototype
file), puts them in the fixed directory format and copies everything to the instal­
lation medium.

To package your software, execute

pkgmk [-d device] [-f filename]

You must use the -d option to name the device onto which the package should
be placed. device can be a directory pathname or the identifier for a disk. .The
default device is the installation spool directory.

pkgmk looks for a file named prototype. You can use the -f option to specify
a package contents file named something other than prototype. This file must
be in the prototype format.

For example, executing pkgmk -d /dev/diskette creates a package based on
a file named prototype in your current working directory. The package will
be formatted and copied to the diskette in the device /dev/diskette.

Creating a Package Instance

pkgmk will create a new instance of a package if one already exists on the dev­
ice to which it is writing. It will assign the package an instance identifier. Use
the -0 option of pkgmk to overwrite an existing instance of a package rather
than to create a new one.

Helping pkgmk Locate Package Contents

The following list describes situations that might require supplying pkgmk with
extra information and an explanation of how to do so:

• Your development area is not structured in the same way that you want
your package structured.

You should use the pathl=path2 pathname format in your prototype file.

• You have relocatable objects in your package.

8-54 System Services and Application Packaging Tools

Creating a Package with pkgmk

You can use the pathl=path2 pathname format in your prototype file,
with pathl as a relocatable name and path2 a full pathname to that object
on your machine.

You can use the search command in your prototype file to tell pkgmk
where to look for objects.

You can use the -b basedir option of pkgmk to define a pathname to
prepend to relocatable object names while creating the package. For
example, executing

pkgmk -d /dev/diskette -b usr2/myhome/reloc

would look in the directory /usr2/myhome/reloc for any relocatable
object in your package.

• You have variable object names.

You can use the search command in your prototype file to tell pkgmk
where to look for objects.

You can use the param=="value" command in your prototype file to give
pkgmk a value to use for the object name variables as it creates your pack­
age.

You can use the variable-value option on the pkgmk command line to
define a temporary value for variable names.

• The root directory on your machine differs from the root directory
described in the prototype file (and that will be used on the installation
machine).

You can use the -r rootpath optioq.to tell pkgmk to ignore the destination
pathnames in the prototype file. Instead, pkgmk prepends rootpath to
the source pathnames in order to find objects on your machine.

Packaging Application Software 8-55

Creating a Package with pkgtrans

pkgtrans performs the following package translations:

• a fixed directory structure to a datastream

• a datastream to a fixed directory structure

To perform one of these translations, execute

pkgtrans devicel device2 [pkgl [, pkg2 [...]]]

where devicel is the name of the device where the package currently resides,
device2 is the name of the device onto which the translated package will be
placed, and pkgl(pkg2 ...) is one or more package names. If no package names
are given, all packages residing in devicel will be translated and placed on dev­
ice2.

H more than one instance of a package resides on device1. you must use an
instance identifier for pkg.

Creating a Datastream Package

Creating a datastream package requires two steps:

1. Create a package using pkgmk..

Use the default device (the installation spool directory) or name a direc­
tory into which the package should be placed. pkgmk. creates a package
in a fixed directory format. Specify the capacity of the device where the
datastream will be placed as an argument to the -1 option.

2. After the software is formatted in fixed directory format and is residing in
a spool directory, execute pkgtrans.

This command translates the fixed directory format to the datastream for­
mat and places the datastream on the specified medium.

For example, the two steps shown below will create a datastream package.

1. pkgmk. -d spoo1dir -1 1400

8-56 System Services and Application Packaging Tools

Creating a Package with pkgtrans

(Fonnats a package into a fixed directory structure and places it in a
directory named spooldir. Each part of the package will require no
more than 1400 blocks.)

2. pkgtrans spooldir 9track package!

(Translates the fixed directory fonnat of package! residing in the direc­
tory spooldir into a datastream fonnat. Places the datastream package
on the medium in a device named 9track.)

OR

3. pkgtrans -s spooldir diskette package!

(Similar to number 2 above, except that it places the datastream package
on the medium in a device named diskette. pkgtrans will prompt for
additional volumes if the package requires more than one diskette.)

Translating a Package Instance

When an instance of the package being translated already exists on device2,
pkgtrans will not perform the translation. You can use the -0 option to tell
pkgtrans to overwrite any existing instances on the destination device and the
-n option to tell it to create a new instance if one already exists. Note that this
check does not apply when device2 contains a datastream format.

Packaging Application Software 8-57

Quick Reference to Packaging Procedures

Before beginning any packaging procedure, you must first have planned your
packaging needs based on the information presented in this chapter. "Basic
Steps of Packaging" gives a comprehensive list of possible packaging steps and
considerations. This section only covers the required steps.

1. Create a prototype file.

8-58

• Create one manually using any editor. There must be one entry
for every package component. The format for a prototype file
entry is:

[volno] ftype class pathname [major minor] [mode owner group]

volno designates the medium volume number on which the
object should be placed. If no volno is given, pkgmlc distributes
package components across volumes automatically.

/type must be one of these object file types:

f (standard executable or data file)
e (file to be edited upon installation or removal)
v (volatile file, contents will change)
d (directory)
x (exclusive directory)
1 (linked file)
p (named pipe)
c (character special device)
b (block special device)
i (installation script or package information file)
s (symbolic link)

class defines the class to which the object belongs. Place an
object into the class of none if no special handling is required.

pathname defines the pathname of an object. It can be in one of
these formats:

a fixed pathname: Isrclrnyfile

a collectively relocatable pathname: srclmyfile (no beginning
slash)

System Services and Application Packaging Tools

Quick Reference to Packaging Procedures

Cl individually relocatable pathname: $BIN/myfile

This pathname defines where the component should reside on
the installation medium and also tells pkgrnk where to find it on
your machine. If these names differ, use the pathl=path2 format
for pathname, where pathl is the name it should have on the ins­
tallation machine and path2 is the name it has on your machine.

major minor defines the major and minor numbers for a block or
character special device.

mode owner group defines the mode, owner and group for the
object. If not defined, the value of the default command is
used. If no default value is defined, 644 root other is
assigned.

You can use four types of command lines in a prototype file:

search pathnames (defines a search path for pkgrnk to use when
creating your package)

include filename (nests prototype files)

default mode owner group (defines a default mode owner
group for objects defined in this prototype file)

param==value (defines parameter values for pkgrnk)

All command lines must begin with an exclamation point (!).

• Create one using pkgproto.

pkgproto [-i) [-c class] [path1[=path2] ... J > filename

where -i tells pkgproto to record symbolic links with an
ftype of f (not s), -c defines the class of all objects as class, and
pathl defines the object pathname (or names) to be included in
the prototype file. If pathl is a directory, entries for all objects
in that directory will be generated.

Use the pathl=path2 format to give an object a different path­
name in the prototype file than it has on your machine. pathl
is the pathname where objects can be located on your machine
and path2 is the pathname that should be substituted for those
objects.

Packaging Application Software 8-59

Quick Reference to Packaging Procedures

pkgproto writes its output to the stand!U'd output. To create a
file, you should redirect the output to a file. That file can be
named prototype (although it is not required).

2. Create a pkqinfo file.

Use any editor. Define one entry per line per paratneter in this format:

PARAM-"value"

where P ARAM is the name of one of the standard installation p!U'ameters
defined in the pkqinfo manual entry in Appendix B and value is the
value you assign to it.

You can also define values for your own installation parameters using the
same format. Names for parameters that you create must begin with a
capital letter and be followed by only lower-case letters.

The following five parameters are required in every pkqinfo file: PKG,
NAME, ARCH, VERSION and CATEGORY. No other restrictions apply con­
cerning which parameters or how many parameters you define.

The CLASSES parameter dictates which classes are installed and the order
of installation. Although the parameter is not required, no classes will be
installed without it. Even if you have no class action scripts, the none
class must be defined in the CLASSES parameter before objects belonging
to that class will be installed.

3. Execute pkgmk.

pkgmk [-d device] [-r rootpath] [-b baSedir] [-f filename]

where -d specifies that the package should be copied onto device, -r
requests that the root directory rootpath be used to locate objects on your
machine, -b requests that basedir be prepended to relocatable paths when
searching for them on your machine, and -f names a file, filename, to be
used as your prototype file. (Other options are described in the pkgmk
manual entry in Appendix B.)

Refer to the procedures in this chapter for details on other, optional packaging
steps (including how to use pkqtrans to create a package inda@stream struc­
ture).

8-60 System Services and Application Packaging Tools

9 Modifying the sysadm Interface

Overview of sysadm Modification 9-1
Introduction to the Tools 9-1

• The edsysadm Command 9-1
• The delsysadm Command 9-2
• The Data Validation Tools 9-3

Introduction to the Package Modification Files 9-3
Overview of the Interface Modification Process 9-4

Planning Your Interface Modifications 9-6
Deciding if You Should Modify the Interface 9-6
Planning the Location of Your Modifications 9-6

• An Overview of the Interface Structure 9-6
• Planning Your Administration Structure 9-8

Naming Your Interface Modifications 9-9
• How to Name Your Modifications 9-9
• Interface Naming Requirements 9-10
• How the System Handles Naming Collisions 9-10

Writing Your Administration Actions 9-11

Writing Your Help Messages 9-12
The Item Help File 9-12

• The Menu Item Help Message Format 9-13
• The Default Title Format 9-14
• The Field Item Help Message Format 9-14

Table of Contents

Table of Contents _____________________ _

The Title Hierarchy 9-16
Setting Up for Item Help in a FACE Object 9-17
Example Item Help Files 9-17

Packaging Your Interface Modifications 9-21
Basic Steps for Packaging Your Modifications 9-21
Creating or Changing the Packaging for a Menu Entry 9-22

• Creating the Packaging for a Menu Entry 9-22
• Changing the Packaging for a Menu Entry 9-23
• Testing Your Menu Changes On-Line 9-25
• The Menu Definition Form 9-25

Creating or Changing the Packaging for a Task Entry 9-27
• Creating the Packaging for a Task Entry 9-27
• Changing the Packaging for a Task Entry 9-28
• The Task Definition Form 9-30

Preparing Your Package 9-32

Deleting Interface Modifications 9-33

II System Services and Application Packaging Tools

Overview of sysadm Modification

UNIX System V Release 4 provides a menu interface to the most common
administrative procedures. It is invoked by executing sysadm and so is referred
to as the sysadm interface. (A complete description of this interface and instruc­
tions on how to use it can be found in the System Administrator's Guide.)

You can deliver additions or changes to this interface as part of your application
software package. Creating the necessary information for an interface
modification is a simple process due to the tools provided by SVR4.

This chapter describes these tools, provides all of the needed background infor­
mation, and details the procedures necessary to design and write your package
administration and to package it so that it will become a part of the administra­
tion interface on the installation machine.

1 .•.••••.••••.•...•.

1

.....•••..... · ..•..•••. ·.· .•..•.. ·.1.. This chapter assumes you are familiar with the material covered in the
N.~T~ "Packaging Application Software" chapter.

Introduction to the Tools

Two commands can be used to create the files necessary to deliver modifications
to the sysadm interface as a part of your package.

• edsysadm creates all of the files needed for your interface modifications to
be installed along with your package

• delsysadm deletes menus or tasks from the interface

This chapter also provides an overview of a group of tools known as the data
validation tools. You can use them when writing your system administration to
simplify and standardize the programming of administrative interaction. The
tools are described in detail in the "Data Validation Tools" chapter of this book.

The edsysadm Command

edsysadm, which allows you to make changes or additions to the interface, is an
interactive command that functions much like the sysadm command itself. It
presents a series of prompts for information. (Which prompt appears depends
on your response to the previous prompt.)

Modifying the sysadm Interface 9-1

OVerview of sysadm Modification

After you have responded to all the prompts, edsysadm presents a form that
you must fill in with information describing the menu or task being changed or
added. This form is called the menu (or task) definition form. If you are chang­
ing an existing menu or task entry, the definition form will already be filled in
with the current values, which you can edit. If you are adding a new menu or
task entry, the form will be empty and you will have to fill it in.

When you follow the procedures in this chapter, edsysadm creates all of the files
and directories necessary to deliver your interface modifications as a part of
your package. The section entitled '1ntroduction to the Package Modification
Files" describes the three files that edsysadm creates.

edsysadm builds the directory structure required by the sysadm interface. You
do not need to know this structure and you are not required to have your work
directory organized in any predefined way. When you fill in a menu or task
definition form, you supply filenames (for example, a file containing help mes­
sages) that edsysadm should use when creating the packaging for your interface
modifications. edsysadm creates a prototype file and builds the interface direc­
tory format by using the pathl=path2 naming convention. path2 defines where
the files reside on your maChine and pathl defines where they should be placed
on the installation machine.

The delsysadm Command
delsysadm removes tasks and menus from the interface. When you deliver
your modifications as a part of your package, you do not need to use del­
sysadm to remove them. Any time an interface modification is delivered as a
part of a package, those modifications are automatically removed at the same
time as the package. This chapter describes the delsysadm command in case
you need to use it on your own machine, for example to remove modifications
added for testing.

delsysadm checks for dependencies on the entry being removed before deleting
the entry. (A dependency exists if the menu being removed contains an entry
placed there by an application package.) If delsysadm discovers a dependency,
you are asked whether you want to continue with the removal. (If a depen­
dency is found during an automatic removal, the interface entry is not
removed.)

9-2 System Services and Application Packaging Tools

Overview of sysadm ModHlcatlon

When you delete a menu entry with delsysadrn, it must already be empty (con­
tain no other menus or tasks) or you can execute delsysadm with the -r option.
This option removes a menu and all its entries at the same time.

\}::::::}t'· added to an Interface.
T Use dal.~ to remove only !hose menu or task entri .. that you have

'\i\f::--

The Data Validation Tools

The data validation routines help standardize administration interaction in the
SVR4 environment and also make development easier. The tools are available
as shell commands and as visual modules to be used in a FACE (Framed Access
Command Environment) form. The tools perform the following series of tasks:

• prompt a user for a particular type of input

• validate the response

• format and print help and error messages

• return the input if it passes validation

The type of validation performed is defined by the tool itself. For example, the
shell command ckyorn prompts for and validates an affirmative or negative
response. These tools should be used in your administration programs if they
are to be added to the sysadm interface to maintain consistency within the inter­
face. Refer to the chapter "Data Validation Tools" for full details on these tools
and their uses.

Introduction to the Package Modification Files

When you execute edsysadm to define menus and tasks and save those
definitions to be included in your application software package, it creates three
files:

• the package description file

Modifying the sysadm Interface 9-3

OVerview of sysadm Modification

• the menu information file

• the prototype file

The package description file contains information edsysadm uses to change
interface modifications already saved for packaging. When you decide to
change your modifications after already creating the packaging (meaning the
menu information and prototype files are already created), the package
description file provides edsysadm with the information it needs to locate the
other package modification files and to make the changes. Without this file,
edsysadm cannot make such a change. You are asked to supply a name for this
file during the edsysadm interaction and it is created in your current working
directory (unless you supply a full pathname to a different directory with the
name).

The menu information file contains the menu or task name, where it is located
in the interface structure, and, for tasks, what executable to use when the task is
invoked. It tells the interface installation software how to modify the interface
structures to include the new definitions. The file's name is the hour, minute,
second, day-of .. :year, and year that the file was created, followed by an .mi
suffix~ It is created in your current working directory.

The prototype file created by edsysadm contains entries for all of the interface
modification components that must be packaged with your ~ftware (for exam­
ple, the menu information file and, for tasks, the executables)i 'these entries
must be incorporated into your package either by readil\g the edsysadm-created
file into your package prototype file·or by using the include command in the
main prototype file for your package. The prototype file created by edsysadm
is created in your current working directory with the name of prototype.

Overview of the Interface Modification Process

You must take a number of steps to add your package administration to the
sysadm interface. This chapter explains each step in detail. The following steps
are covered:

9-4

• planning your package administration (with details on how to decide if
you should modify the interface and where to place it in the interface
structure)

System Services and Application Packaging Tools

Overview of sysadm Modification

• writing your administration actions (with general information on what
your executables can be)

• writing your help message (with a description of the required help mes­
sage file)

• packaging your interface modifications (with procedural details on execut­
ingedsysadm and what steps must be taken afterwards)

This chapter also includes instructions on executing delsysadm.

Modifying the sysadm Interface 9-5

Planning Your Interface Modifications

You will need to plan your interface modifications before executing edsysadm.
Planning begins with deciding if your administration tasks should become a
part of the sysadm interface. If so, you must decide on where your tasks fit into
the interface, what to name your tasks, and the full menu structure involved
with your administrative tasks.

Deciding if You Should Modify the Interface

Any type of task can be added to the sysadm interface with the following two
restrictions: .

• Tasks that can be automated should not be added to the interface (for
example, procedures that can run automatically as part of system booting
or as part of your package installation).

• Tasks that require the system to be in firmware mode can be added to the
interface but it is strongly recommended that they not be.

Once you have decided to add your administration tasks to the interface, you
must determine where in the interface you want to locate tasks and menus.

Planning the Location of Your Modifications

To plan your modification you must first become familiar with the interface
organization. Then you must decide how to organize the tasks you want to add
and how to fit your modifications into the overall structure.

An Overview of the Interface Structure
The sysadm interface consists of a hierarchy of menus. At the top of the hierar­
chy is the main menu (labeled System Administration Menu). It appears on
the screen, immediately after sysaclm is invoked, as follows:

9-6 System Services and Application Packaging Tools

Planning Your Interface Modifications

The applications menu will not appear on the main sysadm menu until
at least one menu or task has been placed under it.

The main menu consists of a list of function-specific menus. The lefthand
column notes the menu names (such as machine) and the righthand column
gives descriptions of these menus. Each menu offers other menus and/or
names of tasks. For example, the machine menu, shown below, contains one
menu (configuration) and five tasks.

Choosing the entry configuration from this screen will cause another menu
to be presented. Choosing a task entry, such as powerdown, will begin execu­
tion of that task.

Modifying the sysadm Interface 9-7

Planning Your Interface Modifications

Planning Your Administration Structure
Planning your administration structure requires three steps:

1. Deciding what tasks to add to the interface.

You can add any number of tasks. You should have separate entries for
each task to be performed. For example, if your administration allowed a
log to be changed, added to, and removed, you should create an entry for
each task and not combine them into one entry called log administra­
tion.

2. Deciding under which menu the tasks should be placed.

You can create new sysadm menus at any level and you can change or
add to any of the original sysadm menus. You should be aware, how­
ever, that if you make changes to original menus you might cause prob­
lems in the execution of standard sysadm operations. It is therefore
recommended (though not mandatory) that you create new menus for
your package administration by placing it under the applications
menu (located on the main menu) or by creating a new main menu entry.

3. Organizing your tasks.

You can organize your tasks under one menu or place them in submenu
groups. For exampie, if your package has tasks to be performed daily
and weekly, you might create a structure such as the following:

• Under the applications menu on the main menu, add an
entry for your package called pkgAadmin.

• Under pkgAadmin, add two submenus called daily and
weekly.

• Under the submenu daily, add entries for each of the daily
tasks.

• Under the submenu weekly, add entries for each of the weekly
tasks.

It is important that you have your full administrative structure planned before
running edsysadm because you must create a menu entry before placing a task
or submenu under it.

9-8 System Services and Application Packaging Tools

Planning Your Interface Modifications

After you have planned your structure, you should decide on the names for
your menus and tasks.

Naming Your Interface Modifications

Naming your interface modifications requires the following three pieces of infor­
mation described below. This section also details the interface naming require­
ments and tells you how the system handles naming collisions.

How to Name Your Modifications

When naming your interface modifications, you must decide on these three
pieces of information:

Name The name of the menu or task as it will appear in the left:..
hand column of the screen.

Description

Location

The description of the menu or task as it will appear in the
righthand column of the screen.

The location of a menu or task in the sysadm menu hierar­
chy. This location is a combination, step-by-step, of all the
menu names that must be chosen to reach the menu or
task. Each step must already exist when the entry is
added. For example, when you add a task with a location
of main: applications: mypkg, you must already have
created an entry for the menu mypkg.

All locations begin with main. When defining a location in
the procedures that follow, each step should be separated
by a colon. For example, the powerdown task is under the
menu machine, which, in tum, is under the main menu.
Thus, the location of the powerdown task is
main: machine.

You will supply these pieces of information on the menu (or task) de£nition
form.

Modifying the sysadm Interface 9·9

Planning Your Interface ModHlcatlons

Interface Naming Requirements
A menu or task name should be as short as possible in length but, at the same
time, be descriptive. It can contain only lower case letters and underscores and
has a maximum length of 16 characters.

The description field can contain any character string and has a maximum
length of 58 characters. This description field text for a menu is also used as the
title for that menu when it is displayed. Use of standard title capitalization
rules is recommended.

How the System Handles Naming Collisions
A naming collision might occur under two circumstances:

• When the package being installed is an update to an existing version.

The administrator will be asked during installation if this is an update, in
which case the existing menus and tasks will be overwritten.

• When two packages have created identical interface modifications.

9-10

The colliding menu or task will be renamed by adding the first available
numerical suffix (beginning with 2). For example, if an entry for menuA
already exists and a package attempts to add an identical entry, the one
being added will be renamed to menuA2.

System Services and Application Packaging Tools

Writing Your Administration Actions

When you execute edsysadm to create packaging for a task entry, you will fill
in a task definition form. One of the fields on that form asks for the name of
the task action file. The task action file is the executable that will run when
your task is selected from the interface. Your administrative task can use more
than one executable, but, if so, you must create one that is called when the task
is selected and call any other executables associated with the task from within it.

The task action can be one of two types:

• Non-interactive

A non-interactive task action can be any shell executable.

• Interactive

An interactive task action must be a FACE fonn. (Refer to the
Programmer's Guide: Character User Interface (FMU and ETI) for instructions
on writing a FACE form.)

Use the tools described in the chapter "Data Validation Tools" whenever possi­
ble when writing administrator interaction.

Modifying the sysadm Interface 9-11

Writing Your Help Messages

You must write help messages to be packaged with every interface
modifications. They are delivered in what is called an item help file. This file
has text for two types of messages:

• the help message that will be shown when the user requests help from the
parent menu

• the help messages that will be shown for each field when your task action
is a FACE form

The format of the item help file allows you to create one item help file for each
task, combine all of your help messages for multiple tasks into one file, use the
same message for multiple FACE forms, and to define a title hierarchy for the
help message screens.

The Item Help File

There are no naming restrictions for the item help file that resides on your
machine. However, within the interface structure, the item help file must
always be named Help. You can use this name if you want to but it is not
mandatory since edsysadm uses the path1=path2 naming convention in the pro­
totype file that it creates to define the directory structure required by the inter­
face. Regardless of what the item help file is named on your machine, path1 in
the prototype file will have the name Help. This means that you can have
more than one item help file in your working directory at the same time and
edsysadm will handle the details of giving it the correct name.

There are three types of entries in an item help file:

• the menu item help

• the default title (can define both a global default and a form default)

• the field item help

A description of each type of entry and its format follows. All of the entries use
the colon (:) as the keyword delimiter.

9-12 System Services and Application Packaging Tools

Writing Your Help Messages

The Menu Item Help Message Format
The menu item help message will be shown whenever a user requests help on
an entry from the parent menu. Menu item help must be written for each menu
and task entry being delivered as an interface modification. For example, if
your package administration is adding a menu under main: applications
and that menu has three tasks under it, you will need to deliver four menu item
help messages.

The format for the menu item help definition is as follows:

[task_name:] ABSTRACT:
<TAB> Line 1 of message text
<TAB> Line 2 of message text
<TAB> Line n of message text

task_name defines the task (or menu) entry to which this help message belongs.
This name must match the name that you have decided should appear in the
lefthand column of the menu screen. (Refer back to "Naming Your Interface
Modifications" for more details on this name.) task_name is not optional when
more than one menu item help definition is defined in the same item help file.
This helps to distinguish to which task or menu the message belongs.

The message text should be entered beneath the header line. There can be mul­
tiple lines of text with a maximum length of 69 characters per line. Each line
must begin with a tab character. Blank lines may be included within the mes­
sage as long as they also begin with a tab character. An example menu item
help definition is shown below.

taskl:ABSTRACT:
This is line one of the menu item help message.
This is a second line of message text.

The preceding line will appear as a blank line
when the help message is shown because it begins
with a tab.

The title for a menu item help message is always the description text, as it
appears in the lefthand column of the menu display, prepended by the string
Help on.

Modlfyln~ the sysadm Interface 9-13

Writing Your Help Messages

The Default Title Format

You can define two types of default titles:

• a global default title to be used on all of the help messages defined in the
item help file

• a form default title to be used on all of the help messages defined for a
particular form in an item help file with messages defined for numerous
forms

Defaults can be overridden, as described in the section liThe Title Hierarchy." A
default title definition is recommended but not required.

The format for the default title definition is as follows:

[form_id: 1 TITLE: Title Text

form_id is the name of the form as it is defined with lininfo in your FACE
form definition. When a form _id is supplied, this line defines a form default
title. When it is not supplied, this line defines a global default title.

The title text defined after the TITLE keyword will have the string HELP on
prepended to it when displayed. Keep this in mind when writing the title.

An example form default title definition is shown below.

task!:TITLE:Package Administration Task!

If task! had not been added before TITLE, this example would be defining a
global default title. The title defined by the example above will be displayed as:

HELP on Package Administration Task!

The Field Item Help Message Format

The field item help message will be shown whenever a user requests help from
within a FACE form. Each field on the form must have a help message defined
in the item help file.

9-14 System Services and Application Packaging Tools

Writing Your Help Messages

The format for the field item help definition is as follows:

[form_id:] field_id: [Title Text]
<TAB> Line 1 of message text
<TAB> Line 2 of message text
<TAB> Line n of message text

form_id is the name of the form as it is defined with lininfo in your FACE
form definition. When one item help file contains messages for multiple tasks
(and so multiple forms), it is used to distinguish with which form a field
belongs. It is optional if the file contains messages for only one task.
field_id is the name of the field as it is defined with lininfo in your FACE
form definition. Title text defines a title used only with the help message for
this field. As with the default title, the text defined here will have the string
HELP on prepended to it when displayed.

The message text should be entered beneath the header line. There can be mul­
tiple lines of text with a maximum length of 69 characters per line. Each line
must begin with a tab character. Blank lines may be included within the mes­
sage as long as they also begin with a tab character. An example field item help
definition is shown below.

taskl:fldl:the Name Field
This is the text for a field item help for a name
field.

The preceding line will appear as a blank line
when the help message is shown because it begins
with a tab.

The title for this field item help message, as defined above, will be HELP on
the Name Field

Modifying the sysadm InterfaCe

Writing Your Help Messages

The Title Hierarchy

You can define a global defaull title, a form default title, and a field title in the
item help file. When all three are defined in the same file, the following rules
are followed:

• The global default title is used for any message defined in an item help
file that does not have a form default title or field title.

• The form default title is used for any message defined in an item help file
and that is associated with the form, unless it has a field title.

• The field title is used only for the one field item help message for which it
is defined.

In summary, if no field title is defined, the form default title is used. If no form
default title is defined, the global default title is used. You always want at least
a global default title defined; otherwise, the string HELP on will be displayed
with no descriptive text.

To define a global default title, add a line to your item help file in the following
format:

TITLE: Title Text

where Title Text is the text for the global default title.

To define a form default title, add a line to your item help file in the following
format:

form_id: TITLE: Title Text

where form_id is the name of form as it is defined with lininfo in your FACE
form definition and Title Text is the text for the form default title.

To define a field title, use the following format for the field item help header
line:

form _ id : field _ id : Title Text

where form_id is the name of the form as it is defined with lininfo in your
FACE form definition, field_id is the name of the field as it is defined with
lininfo in your FACE form definition and Title Text is the text for the field
title.

9·16 System Services and Application Packaging Tools

Writing Your Help Messages

In all cases, the text defined as Title Text is always prepended with the string
HELP on when displayed to a user.

Setting Up for Item Help in a FACE Object

To help the interface read your item help file and know with which forms and
fields a help message is associated, you must define your help and lininfo
descriptors in your FACE object definition as follows:

• The help descriptor must be defined exactly as shown on the line below:

help=OPEN TEXT $INTFBASE/Text.itemhelp $LININFO

• The lininfo descriptor for each field must be defined as

lininfo= [tonn _id :] field)d

where fonn)d and field _id are names each no longer than 30 characters.
The names defined here as tonn)d and field _id must match exactly those
used as tonn_id and field_id in the item help file.

I ..••...•. · ... · .•.•..•.. · .•.•.•.. ·1.·.·.·· .. •.•.••·• .. ·.·.··.··.·.·.1·. Since you do not c,eate a FACE fo"" defin;';.n fo' a menu ent!Y_ you do not NOTE need to take any setup actions. However, you should be certain that the
» task_name keyword precedes the ABSTRACT heading line for a menu entry
. help message.

Example Item Help Files

This section shows two example item help files. Figure 9-1 shows an item help
file that defines messages for only one form. Figure 9-2 shows an example of
defining messages for multiple forms in one item help file.

Modifying the sysadm Interface 9-17

Writing Your Help Messages

Figure 9-1: Hem Help File for One Form

9-18 System Services and Application Packaging Tools

Writing Your Help Messages

Figure 9-2: Hem Help File for Multiple Forms

Modifying the sysadm Interface 9-19

Writing Your Help Messages

Figure 9-2: hem Help File for Muhlple Forms (continued)

9-20 System Services and Application Packaging Tools

Packaging Your Interface Modifications

To prepare your interface modifications for installation, you must create the
packaging for your menus and tasks by executing edsysadm. The packaging
created by edsysadm consists of two files, a prototype file and a menu infor­
mation file. This section describes the procedures for creating these files and
what to do after they have been created. (It also describes how to change the
packaging after it has been created.)

edsys,.dm also creates a package description file. edsysadm uses this file
during its execution and is not a part of the packaging.

Basic Steps for Packaging Your Modifications

The procedures described next must be repeated for each menu and task entry
being added. Begin with creating the menu entry (or entries) because you can­
not add tasks or submenus to a menu that does not exist. Be certain that you
use the same package description file name for all of the entries belonging to a
package.

After running edsysadm, be certain to follow the steps described in "Preparing
Your Package" (at the end of this section) to incorporate the modifications into
your software package.

For example, if your administration requires the addition of one menu and four
tasks, you will need to follow the procedure for creating the packaging for a
menu entry, then repeat the procedure for c~ating tp-e packaging for a task
entry four times. Eilch tim{;!,wh~n as~fol,' a ~(;~description file name,
give the same name· to ensurefujt the. Pac~girlgcr~~:C9Il~jIlS aU the neces­
sary entries. These procedures will creCite a menu information file and a proto­
type file with all of the information necessary to include your interface ..
modifications in your package. The two remaining steps (described in "Prepar­
ing Your Package") are to include the edsysadm created prototype file in
your package p,rototype file and to edit the CLASSES parameter in the
pkqinfo file.

Modifying the sysadni Interface 9-21

Packaging Your Interface ModHlcatlons

Creating or Changing the Packaging for a Menu Entry

The procedures for creating and changing the packaging for a new menu are
similar and both result in the display of a menu definition form. Each pro­
cedure is described below, followed by a description of the menu definition
form.

Creating the Packaging for a Menu Entry
Before creating the packaging for a new menu entry, you should:

• Select a name and description for the menu.

• Select a location for it in the interface.

• Prepare a help message file for the menu entry (refer to ''Writing Your
Help Messages" presented earlier in this chapter for instructions).

• Know the name of the package description file to which the information
for this menu should be added (if you are adding multiple menus and
tasks)

1. Type edsysadm and press <RETURN>.

H you do not execute this command from the directory in which the
help message file resides. supply the full path name when prompted
for the name of the help message file.

2. You are asked to choose between a menu and a task. Choose menu and
press <RETURN>.

3. You are asked to choose between adding a new menu or changing an
existing one. Choose add and press <RETURN>.

4. You are given an empty menu definition form. Fill it in and press
<SAVE>. (See ''The Menu Definition Form" for descriptions of the fields
on this form.)

5. You are asked if you want to test the changes before actually making
them. Answer either yes or no and press <SAVE>. (If you answer yes,
refer to the ''Testing Your Menu Changes On-Line" section to learn what
the test involves.)

9-22 System Services and Application Packaging Tools

Packaging Your Interface Modifications

6. You are asked if you want to install the modifications into the interface
on your machine or save them for a package. Choose save and press
<SAVE>.

7. You are asked to supply a file name. Enter a name for the package
description file and press <SAVE>.

8. If the file name given for the package description file already exists, you
are asked if you want to overwrite it or add to its contents. Answer
overwrite, do not overwrite, or add and press <SAVE>.

9. If the file name does not already exist (or after you have completed Step
8) you will see a message stating that the menu information file and pro­
totype file have been verified and the top-level prototype must be
edited to include the new prototype file. Press <CANCEL> to return to
the menu shown in step 3. Press <CONT> to return to the form shown in
step 4.

Changing the Packaging for a Menu Entry

Before changing the packaging for a menu entry, you should:

• Know the name and description of the menu entry.

• Know its location in the interface.

• Change the associated help message file, if necessary, or create a new one
(refer to 'Writing Your Help Messages" presented earlier in this chapter
for instructions).

• Know the name of the package description file associated with the pack­
age being changed (and know that it is available in your current working
directory).

1. Type edsysadm and press <RETURN>.

Modifying the sysadm Interface 9-23

Packaging Your Interface ModHlcatlons

H you have changed a help message file or created a new one and
you do not execute this command from the directory in which the help
mes~age file resides, supply the full path name when asked for the
name of the file.

2. You are asked to choose between a menu and a task. Choose menu and
press <RETURN>.

3. You are asked to choose between adding a new menu and changing an
existing one. Choose chanqe and press <RETURN>.

4. You are asked if your change is for an on-line menu or for a menu that
has been saved for a package. Choose packaqed and press <SAVE>.

5. You are asked to supply the package description file name for the pack­
age beinging changed. Fill in the name of a valid package description file
and press <SAVE>.

6. You are given a menu definition form filled in with the current values for
the menu named above. Make the desired changes and press <SAVE>.
(See the 'The Menu Definition Form" for descriptions of the fields on this
form.)

7. You are asked if you want to test the changes before actually making
them. Answer either yes or no and press <SAVE>. (If you answer yes,
refer to the section entitled "Testing Your Menu Changes On-Line" to
learn what the test involves.>

8. You are asked if you want to install the modifications into the interface
on your machine or save them for a package. Choose save and press
<SAVE>.

9. You are asked to supply a file name. Enter a name for the package
description file and press <SAVE>. (This must be the same package
description file named in Step 5.)

10. If the file name given for the package description file already exists, you
are asked if you want to overwrite it or add to its contents. Answer
overwrite, do not overwrite, or add and press <SAVE>.

11. If the file name does not already exist (or after you have completed Step
10) you will see a message stating that the menu information file and
prototype file have been verified and the top-level prototype must be
edited to include the new prototype file. Press <CANCEL> to return to

9·24 System Services and Application Packaging Tools

Packaging Your Interface Modifications

the menu shown in step 4. Press <CONT> to return to the form shown in
step 5.

Testing Your Menu Changes On-Line
Before installing your menu changes, you may want to verify that you've added
an entry to a menu. The edsysadm command gives you a chance to do this
after you fill in the menu definition form. Follow these steps to perform your
test.

1. Type yes when edsysadm presents the following prompt:

Do you want to test this modification before continuing?

2. The parent menu (on which your addition or change is listed) is
displayed. Check to make sure your modification has been made
correctly.

3. Put the cursor on the new or changed menu entry and press the <HELP>
key. The text of the help message for that menu entry is displayed so
you can check it. (Press <CANCEL> to return to the menu.)

4. To exit on-line testing, press the <CANCEL> key.

S. You are returned to the prompt:

Do you want to test this modification before continuing?

If you want to continue executing the change, type no.

If you want to make additional modifications to the menu definition form,
press <CANCEL>. You are returned to the form and can make further
changes at that time. (Press <SAVE> when you have finished your edit­
ing. You can then retest your changes or continue executing the change.)

The Menu Definition Form
This form contains four fields in which you must provide: a menu name, a
menu description, a menu location, and the name of the help message for the
menu. Below are descriptions of the information you must provide in each
field.

Modifying \he sysadm Interface 9-25

Packaging Your Interface ModHlcatlons

Menu Name

Menu Description

Menu Location

Menu Help File
Name

The name of the new menu (as it should appear in
the lefthand column of the screen). This field has a
maximum length of 16 alphanumeric characters.

A description of the new menu (as it should appear
in the righthand column of the screen). This field
has a maximum length of 58 characters and can
consist of any alphanumeric character except the at
sign (@), carat n, tilde (-), back grave (,), grave n,
and double quotes (").

The location of the menu in the menu hierarchy,
expressed as a menu pathname. The pathname
should begin with the main menu followed by all
other menus that must be traversed (in the order
they are traversed) to access this menu. Each menu
name must be separated by colons. For example,
the menu location for a menu entry being added to
the Applications menu is main: applications.
Do not include the menu name in this location
definition. The complete pathname to this menu
entry will be the menu location plus the menu
name defined at the first prompt.

This is a scrollable field, showing a maximum of 50
alphanumeric characters at a time.

Pathname to the item help file for this
menu entry. If it resides in the directory from
which you invoked edsysadm, you do not need to
give a full pathname. If you name an item help file
that does not exist, you are placed in an editor (as
defined by $EDITOR) to create one. The new file is
created in the current directory and named Help.

The following screen shows a filled-in sample menu definition.

9·26 System Services and Application Packaging Tools

Packaging Your Interface Modifications

Creating or Changing the Packaging for a Task Entry

The procedures for creating and changing the packaging for a new task are
similar and both result in the display of a task definition form. Each procedure
is described below, followed by a description of the task definition form.

Creating the Packaging for a Task Entry

Before creating the packaging for a task entry, you should:

• Gather all files that will be associated with this task, such as the help file,
FACE forms, or other executables. All files should already be prepared.

• Decide on the task name and description.

• Decide on its location in the interface.

• Create a help file (refer to "Writing Your Help Messages" presented ear­
lier in this chapter for instructions).

• Know the name of the package description file to which the information
for this task should be added (if you are adding multiple menus and
tasks)

1. Type edsysadm and press <RETURN>.

Modifying the sysadm Interface 9-27

Packaging Your Interface ModHlcatlons

H you do not execute this command from the same directory in which
the files associated with this task reside, enter full path names when
supplying file names.

2. You are asked to choose between a menu and a task. Choose task and
press <RETURN>.

3. You are asked to choose between adding a new task or changing an exist­
ing one. Choose add and press <RETURN>.

4. You are given an empty task definition form. Fill it in and press
<SAVE>. (See "The Task Definition Form" for descriptions of the fields
on this form. Be aware that, when you name the menu under which you
want this new task to reside, that menu must already be packaged.)

5. You are asked if you want to install the modifications into the interface
on your machine or save them for a package. Choose save and press
<SAVE>.

6. You are asked to supply a file name. Enter a name for the package
description file and press <SAVE>.

7. If the file name given for the package description file already exists, you
are asked if you want to overwrite it or add to its contents. Answer
either overwrite, do not overwrite, or add and press <SAVE>.

8. If the ale name does not already exist (or after you have completed Step
7) you see a message stating that the menu information file and proto­
type file have been verified and the top-level prototype must be edited
to include the new prototype file. Press <CANCEL> to return to the
menu shown in step 3. Press <CONT> to return to the form shown in
step 4.

Changing the Packaging for a Task Entry

Before changing the packaging for a task entry, you should:

• Gather any of the files assodated with this task that have been changed or
are new. All files should already be prepared or changed.

9-28 System Services and Application Packaging Tools

Packaging Your Interface Modifications

• Know the menu name and description.

• Know its location in the interface.

• Change the associated help file, if necessary (refer to ''Writing Your Help
Messages" presented earlier in this chapter for instructions).

• Know the name of the package description file associated with the pack­
age being changed (and know that it is available in your current working
directory).

1. Type edsysadm and press <RETURN>.

If your change requires new files or changes to existing files and you
do not execute this command from the directory in which the files
reside, enter full pathnames when supplying file names.

2. You are asked to choose between a menu and a task. Choose task and
press <RETURN>.

3. You are asked to choose between adding a new task and changing an
existing one. Choose change and press <RETURN>.

4. You are asked if your Change is for an on-line task or for a task that has
been saved for a package. Choose packaged and press <SAVE>.

5. You are asked to supply the package description file name for the pack­
age being changed .. Fill in the name of a valid package description file
and press <SAVE>.

6. You are given a task definition form filled in with the current values for
the task named above. Make the desired changes and press <SAVE>.
(See "The Task Definition Form" for descriptions of the fields on this
fomi.)

7. You are asked if you want to install the modifications into the interface
on your machine or save them for a package. Choose save and press
<SAVE>.

8. You are asked to supply a file name. Enter a name for the package
description file and press <SAVE>. (This must be the same package
description file named in Step 5.)

Modifying the sysadm Interface 9-29

Packaging Your Interface Modifications

9. If the file name given for the package description file already exists, you
are asked if you want to overwrite it or add to its contents. Answer
either overwrite, do not overwrite, or add and press <SAVE>.

10. If the file name does not already exist (or after you have completed Step
9) you see a message stating that the menu information file and proto­
type file have been verified and the top-level prototype must be edited
to include the new prototype file. Press <CANCEL> to return to the
menu shown in step 4. Press <CONT> to return to the form shown in
step 5.

The Task Definition Form

This form contains six fields in which you must provide: a task name, a task
description, a task location, the name of a help message for the task, a task
action file, and the files associated with the task. Below are descriptions of the
information you must provide in each field.

Task Name The name of the new task (as it should appear in the left­
hand column of the screen). This field has a maximum
length of 16 alphanumeric characters.

Task Description A description of the new task (as it should appear in the
righthand column of the screen). This field has a max­
imum length of 58 characters and can consist of any
alphanumeric character except the at sign (@), carat n,
tilde n, back grave (,), grave (,), and double quotes (If).

Task Location The location of the task in the menu hierarchy, expressed
as a pathname. The pathname should begin with the
main menu followed by all other menus that must be
traversed (in the order they are traversed) to access this
task. Each menu name must be separated by colons. For
example, the task location for a task entry being added to
the applications menu is main: applications. Do not
include the task name in this location definition. The com­
plete pathname to this task entry will be the task location
as well as the task name defined at the first prompt.

9-30

This is a scrollable field, showing a maximum of 50
alphanumeric characters at a time.

System Services and Application Packaging Tools

Task Help File
Name

Task Action

Task Files

Packaging Your Interface ModHlcatlons

Pathname to the item help file for this .
task entry. If it resides in the directory from which you
invoked edsysadm, you do not need to give a full path-
name. If you name an item help file that does not exist,
you are placed in an editor (as defined by $EDITOR) to
create one. The new file is created in the current direc­
tory and named Help.

The FACE form name or executable that will be run
when this task is selected. This is a scrollable field,
showing a maximum of 58 alphanumeric characters at a
time. This pathname can be relative to the current direc­
tory as well as absolute. (Refer to the "Writing Your
Administration Actions" section for details.)

Any FACE objects or other executables that support the
task action listed above and might be called from within
that action. Do not include the help file name or the task
action in this list. Pathnames can be relative to the
current directory as well as absolute. A dot (.) implies
"all files in the current directory" and includes files in
subdirectories.

This is a scrollable field, showing a maximum of 50
alphanumeric characters at a time.

The following screen shows a filled-in sample task definition form.

Modifying the sysadm Interface

Packaging Your Interface ModHications

Preparing Your Package

You must perform two steps, after executing edsysadm, to include your inter­
face modification files in your application package.

1. Include the prototype file

The prototype file that edsysadm creates must become a part of your
package prototype file structure. This means that you must either read
it into another prototype file or use the include command in your pri­
mary prototype file. For example, adding

!include /myproject/admsrc/prototype

to a prototype file in the /myproject directory ensures that the pro­
totype file in /myproject/admsrc, and all of the objects it describes,
will be included when the packaging tool, pkgmk, creates the package.

2. Change your CLASSES parameter in the pkginfo file

The components defined in the prototype file that edsysadm creates
are placed into the two special classes: OAMmi f and OAMadmin. You
must edit the pkginfo file for your package and add these to the
CLASSES parameter definition. For example, a CLASSES definition before
the change might look like this:

CLASSES="classl class2"

It should be changed to look like this:

CLASSES="classl class2 OAMmif OAMadmin"

Your interface modifications are now ready to be included in your package
when you create your package using pkgmk. (Details on packaging procedures
are discussed in the "Packaging Application Software" chapter.)

9·32 System Services and Application Packaging Tools

Deleting Interface Modifications

Interface modifications can be deleted in two ways. When a package is
removed, the modifications installed with the package are removed automati­
cally. Modifications can also be removed online by executing delsysadm.

To delete either a menu or task entry online, execute

delsysadm name

where name is the location of the task or menu in the interface, followed by the
menu or task name. For example, to delete a task named my task with the loca­
tion main: application: mymenu, execute

delsysadm main: application: mymenu: my task

Before an entry for a menu can be removed, that menu must be empty (contain
no submenus or tasks). If it is not, you must use the -r option with del­
sysadm. This option requests that, in addition to the named menu, all sub­
menus and tasks located under that menu be removed. For example, to remove
main: application: mymenu and all submenus and tasks that reside under it,
execute

delsysadm -r main:application:mymenu

When you use the -r option, delsysadm checks for dependencies before
removing any subentries. (A dependency exists if the menu being removed con­
tains an entry placed there by an application package.) If a dependency is
found, you are shown a list of packages that depend on the menu you want to
delete and asked whether you want to continue. If you answer yes, the menu
and all of its menus and tasks are removed (even those shown to have depen­
dencies). If you answer no, the menu is not deleted.

> added to the Interface With edsysadm.
T.: .. : ... :.: :.IPN > Use delsys~dm to rem(;>ve only those menu or task entries that you have

>:=»"

Modifying the sysadm Interface 9-33

1 0 Data Validation Tools

Introduction to the Tools

Types of Tools

Characteristics of the Tools
The Data Validation Tool Prompts
The Data Validation Tool Help Messages
The Data Validation Tool Error Messages
Message Formatting
The Shell Commands
The Visual Tools

Table of Contents

10-1

10-2

10-3
10-3
10-4
10-5
10-5
10-5
10-8

Introduction to the Tools

The data validation tools are a group of shell level commands that serve two
purposes:

• standardize the appearance of administration interaction in the SVR4
environment regardless of who writes it

• simplify development of scripts requiring administrator input

Every tool generates a prompt, validates the answer and returns the response.
There are no restrictions on when you should use them. It is recommended that
you use them every time your application interacts with an administrator.
Using the tools at such a time will make all administrator interaction look alike
to the user, regardless of the vendor who created the package. You will see, as
well, that using these tools makes writing scripts with administrator interaction
much simplier, since the tools do the work based on parameters you provide.

At the very least, it is recommended that you use them in your request script
(the packaging script from which you can solicit administrator input) and in the
executables you deliver when your package administration will be incorporated
into the sysadm interface. See "Modifying the sysadm Interface" for details
about writing executables for the sysadm interface and "Packaging Application
Software" for details on writing a request script.

This chapter introduces you to the data validation tools and discusses their
characteristics. For details on a specific tool, look in Appendix B of this guide.
The shell commands and corresponding visual tools are provided as Section 1
manual pages.

Data ValidatIon Tools 10-1

Types of Tools

There are two types of data validation tools. Both perform the same series of
tasks (described later) but are used in different environments. The two types
are:

• Shell Commands

These tools are invoked from the shell level and used in shell scripts .

• Visual Tools

10-2

These tools are invoked from within the field definition in an FMU form
definition. While the shell commands perform all tasks with one com­
mand, the visual tools are broken into separate commands for defining
help messages, error messages and performing validation.

System Services and Application Packaging Tools

Characteristics of the Tools

All of the shell commands perform the same series of tasks (the visual tools
each perform a subsection of the full series). Those tasks are:

• Prompt a user for input

• Validate the answer

• Format and print a help message when requested

• Format and present an error message when validation fails

• Return the input if it passes validation

• Allow a user to quit the process

The tool itself defines the type of prompt shown and validation performed is
defined. For example, the shell command ckyorn prompts for a yes or no
answer and accepts only a positive or negative response. Some tools allow you
to supply input during execution to help customize the validation. For exam­
ple, ckrange prompts for and validates an answer within a given range. The
upper and lower limits of the range can be defined when executing ckrange.

Leading and trailing white space is stripped from the input before validation
is performed.

The Data Validation Tool Prompts

Each tool has a default prompt that you can use as is, add to, or overwrite. The
manual page for each tool (see Appendix B) shows the default prompt text.
You must use the -p option of a shell command before the default can be
overwritten.

For E;xample, executing ckyorn without options produces the following Qqtput:

Yes or No [y,n,?,q]:

Data Validation Tools

Characteristics of the Tools

The next example shows the use of the -p option and the output that is pro­
duced.

$ ckyorn -p "Do you want the manual page files installed?"
Do you want the manual page files installed? [y,n,?,q]:

The Data Validation Tool Help Messages

Each tool has a default help message that you can use as is, add to, or com­
pletely overwrite. The manual page for each tool (see Appendix B) shows the
default help message text. You must use the -h option of a shell command
before the default can be overwritten.

For example, if you executed ckyorn without options and the user requested a
help message by entering ? at the prompt, the following message would be
seen:

To respond in the affirmative, enter y, yes, Y, or YES.
To respond in the negative, enter n, no, N, or NO.

The next example shows the use of the -h option when executing ckyorn. The
text defined after the -h will be shown if the user requests a help message.

ckyorn -h "Answer yes if you want the manual page files \
installed or no if you do not."

H you insert a tilde r) at the beginning or end of your definition, the default
text will be added at that point. For example,

ckyorn -h "The manual page files will be written to your \
system, or not, based on your answer.-"

will produce the help message:

10-4

The manual page files will be written to your system, or not,
based on your answer. To respond in the affirmative, enter y,
yes, Y, or YES. To respond in the negative, enter n, no, N, \
or NO.

System Services and Application Packaging Tools

Characteristics of the Tools

The Data Validation Tool Error Messages

Each tool has a default error message that you can use as is, add to, or com­
pletelyoverwrite. The manual page for each tool (see Appendix B) shows the
default error message text. You must use the -e option of a shell command
before the default can be overwritten.

For example, if you executed ckyorn without options, and validation failed, the
following message would be seen:

ERROR: Please enter yes or no.

The next example shows the use of the -e option when executing ckyorn. The
text defined after the -e will be prepended with ERROR: and shown if valida­
tion fails.

ckyorn -e "You did not respond with yes or no."

If you insert a tilde n at the beginning or end of your definition, the default
text will be added at that point.

Message Formatting

All three message types (prompt, error, and help) are limited in length to 78
characters and are automatically formatted. Regardless of how you define them
in your code, any white space used (including newline) is stripped during for­
matting.

You can use the -woption of a shell command (or the ckwidth variable of a
function) to define the line length to which your messages should be formatted.

The Shell Commands

Figure 10-1 lists the shell commands and what they are used for. All of the
shell commands perform the same series of tasks, as described previously. The
table's "Purpose" column describes the type of prompt and validation with
which the command deals. Details for each command can be found on the
respective manual page in Appendix B.

Data Validation Tools 10-5

Characteristics of the Tools

Figure 10-1: The Shell Commands

Command Purpose
(and Function)

Ckdate Prompts for and validates that the answer is a date
(can define format for date).

cJtgid Prompts for and validates that the answer is a group id.

Ckint Prompts for and validates an integer value (can define
base for input).

Ckitem Builds a menu, prompts for and validates a menu item
(can define characteristics of the menu).

Ckkeywd Adds keywords to a prompt and validates that the
return answer matches a keyword.

Ckpath Prompts for and validates a pathname (can define what
type of validation to perform, such as "patbhame must
be readable").

10-6 System Services and Application Packaging Tools

Characteristics of the Tools

Command Purpose
(and function)

ckrange Prompts for and validates an integer within a range
(can define the upper and lower limits of the range).

ckstr Prompts for and validates that the answer is a string
(can define a regular expression, in which case the
string must match the expression).

cktirne Prompts for and validat~s that the answer is a time
(can define format for time).

ckuid Prompts for and validates that the answer is a user id.

ckyorn Prompts for and validates a yes/no answer. Input
must be y, yes, Y, YES, n, no, N, or NO.

dispgid Displays a list of all valid group names.

dispuid Displays a list of all valid user names.

Data Validation Tools 10-7

CharacterIstics of the Tools

The Visual Tools

The visual tools are invoked from within the field definition of an FMLI form.
Because of the nature of FMLI form definitions, it is necessary to divide the
tasks performed by only one shell command into sets. The purpose of a visual
tool set parallels the purpose of a shell command. For example, ckdate per­
forms a group of tasks for a prompt whose response should be a date. The
same group of tasks requires three visual tools:

• errdate (formats and presents an error message)

• helpdate (formats and presents a help message)

• valdate (validates the answer to be a date)

The format and description of each visual tool set is shown on the equivalent
shell command manual page in Appendix B. For example, the equivalent shell
command for the set described above is ckdate. Refer to the manual page
ckdate(l) for details on the three visual tools errdate, helpdate, and val­
date.

Figure 10-3 lists the visual tool sets and their associated response type.

10-8 System ServIces and Application PackagIng Tools

Characteristics of the Tools

Figure 10-2: The Visual Tools

Visual Tool Set Response Type

erryorn, helpyorn, valyorn yes or no

errint, helpint, valint integer

errange, helprange, val range integer in a range

errstr, helpstr, valstr string (potentially
matching an expression)

errpath, helppath, valpath pathname

erritem, helpitem menu item

errgid, helpgid, valgid existing group

errtime, helptime, valtime time of day

errdate, helpdate, valdate date

Data Validation Tools 10-9

Characteristics of the Tools

There are two other visual tools. dispuid displays a list of login ids and
dispgid displays a list of group ids. These two tools can be used with the
FMLI rmenu keyword to display a list of ids.

The following example shows a field definition written in FMLI using the visual
tools:

10-10 System Services and Application Packaging Tools

liber, A Library System

To illustrate the use of UNIX system programming tools in the development of
an application, we are going to pretend we are engaged in the development of a
computer system for a library. The system is known as liber. The early stages
of system development, we assume, have already been completed; feasibility
studies have been done, the preliminary design is described in the coming para­
graphs. We are going to stop short of producing a complete detailed design
and module specifications for our system. You will have to accept that these
exist. In using portions of the system for examples of the topics covered in this
chapter, we will work from these virtual specifications.

We make no claim as to the efficacy of this design. It is the way it is only in
order to provide some passably realistic examples of UNIX system program­
ming tools in use. It is not an application, but rather is code fragments only.

liber is a system for keeping track of the books in a library. The hardware
consists of a single computer with terminals throughout the library. One termi­
nal is used for adding new books to the data base. Others are used for checking
out books and as electronic card catalogs.

The design of the system calls for it to be brought up at the beginning of the
day and remain running while the library is in operation. Associated with each
terminal is a program specific to the function of that terminal, each running as a
separate UNIX process. The system has one master index that contains the
unique identifier of each title in the library. When the system is running the
index is mapped into the address space of each process. Semaphores are used
to synchronize access to the index. In the pages that follow fragments of some
of the system's programs are shown to illustrate the way they work together.
The startup program performs the system initialization; opening the semaphores
and the index file; mapping the index file into memory; and kicking off the
other programs. The id numbers for the semaphores (wrtsern, and rdsem) are
written to a file during initialization, this file is then read by all the subsidiary
programs so that all use the same semaphores.

All the programs share access to the index file. They gain access to it with the
following code:

IIber, A Library System A·'

IIber, A Library System

The preceding code fragment establishes a mapping to the index file in the
address space of the program. Access to the addresses at which the file is
mapped affect the file directly, no further file operations are required. For
instance, if the access deposits data at the accessed address, then the file will be
modified by operation. If the access examines data, then the file will be
accessed. In either case, the portion of the file containing the information will
be obtained or restored to secondary storage automatically by the system and
transparently to the application.

Of the programs shown, add-books is the only one that alters the index. The
semaphores are used to ensure that no other programs will try to read the index
while add-books is altering it. The checkout program locks the file record for
the book, so that each copy being checked out is recorded separately and the
book cannot be checked out at two different checkout stations at the same time.

A-2 System Services and Application Packaging Tools

Jlber, A LIbrary System

The program fragments do not provide any details on the structure of the index
or the book records in the data base.

Jlber, A LIbrary System A-3

IIber, A Library System

A-4 System Services and Application Packaging Tools

IIber, A Library System

IIber, A Library System A-5

IIber, A Library System

A-6 System Services and Application Packaging Tools

IIber, A Library System

IIber, A Library System A·7

IIber, A Library System

A·a System Services and Application Packaging Tools

IIber, A Library System

IIber, A Library System A-9

IIber, A Library System

A-10 System Services and Application Packaging Tools

IIber, A Library System

The example following, addscr () , illustrates two significant points about
curses screens:

1. Information read in from a curses window can be stored in fields that
are part of a structure defined in the header file for the application.

2. The address of the structure can be passed from another function where
the record is processed.

IIber, A Library System A·11

IIber, A Library System

A-12 System Services and Application Packaging Tool,S

IIber, A Library System

Jlber, A LIbrary System A-13

Manual Pages

The manual pages included in this appendix are unique to the Programmer's
Guide: System Services and Appplication Packaging Tools. Other manual pages may
be applicable as well, but won't be duplicated here; they may be referred to in
the appropriate Reference Manual.

Manual Pages 8-1

ckdate(1) ckdate(1)

NAME
ckdate, errdate, helpdate, valdate - prompts for and validates a date

SYNOPSIS
ckdate [-Q] [-w width] [-f format] [-d default] [-h help] [-e error] [-p prompt]
[-k pid [-s signal]]

errdate [-W] [-e error] [-f format]
helpdate [-W] [-h help] [-f format]
valdate [-f format} input

DESCRIPTION

10/89

ckdate prompts a user and validates the response. It defines, among other
things, a prompt message whose response should be a date, text for help and
error messages, and a default value (which will be returned if the user responds
with a carriage return). The User response must match the defined format for a
date.

All messages are limited in length to 70 characters and are formatted automati­
cally. Any white space used iIi the definition (including newline) is stripped.
The -W option cancels the automatic· formatting. When a tilde is placed at the
beginning or end of a message definition, the default text will be inserted at that
point, allowing both custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as
defined under NarES) will be displayed.

Three visual tool modules are linked to the ckdate command. They are errdate
(which formats and displays an error message), helpdate (which formats and
displays a help message), and valdate (which validates a response). These
modules should be used in co~junction with FML objects. In this instance, the
FML object. defines the prompt. When format is defined in the errdate and
helpdate modules, the messages will describe the expected format.

The optiQns and arguments for this command are:

-Q Specifies that quit will not be allowed as a valid response.
-W width 5pecifiesthat prompt, help and error messages will be formatted to a

line l~ngth of wif[th.,
-f format Specifies the format against which the input will be verified. Possible

formats and their definitions are:
%b abbreviated month name
%B full month name
%d day of month (01 - 31)
%0 date as %m/%d/%y (the default format)
%e day of month (1 - 31; single digits are preceded by a blank)
%h abbreviated month name (jan, feb, mar)
%In month humber (01 - 12)
%y year within century (e.g. 89)
%Y year as CCYY (e.g. 1989)

Page 1

ckdate(1) ckdate(1)

-d default

-h help
-e error
-p prompt
-k pid

-s signal

input

Defines the default value as default.
The default does not have to meet the format criteria.
Defines the help messages as help.
Defines the error message as error.
Defines the prompt message as prompt.
Specifies that process ID pid is to be sent a signal if the user chooses
to abort.
Specifies that the process ID pid defined with the -k option
is to be sent signal signal when quit is chosen. If no signal is
specified, SIGTERM is used.
Input to be verified against format criteria.

EXIT CODES

NOTES

Page 2

o = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)
4 = Garbled format argument

The default prompt for ckdate is:

Enter the date [?,q]:

The default error message is:

ERROR - Please enter a date, using the following fonnat: <for­
mat>.

The default help message is:

Please enter a date, using the following fonnat: <format>.

When the quit option is chosen (and allowed), q is returned along with the return
code 3. The valdate module will not produce any output. It returns zero for
success and non-zero for failure.

10/89

ckgJd (1) ckgid(1)

NAME
ekgid. errgid. helpgid. valgid - prompts for and validates a group id

SYNOPSIS
ekgid [~] [-w width] [-m] [-d default] [-h help] [-e error] [-p prompt]
[-k pid [-s signal))

errgid [-W] [-e error]
helpgid [-W] [-m] [-h help]
valgid input

DESCRIPTION

10/89

ekgid prompts a user and validates the response. It defines, among other things,
a prompt message whose response should be an existing group ID, text for help
and error messages, and a default value (which will be returned if the user
responds with a carriage return).

All messages are limited in length to 70 characters and are formatted automati­
cally. Any white space used in the definition (including newline) is stripped.
The -W option cancels the automatic formatting. When a tilde is placed at the
beginning or end of a message definition, the default text will be inserted at that
point, allowing both custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as
defined under NarES) will be displayed.

Three visual tool modules are linked to the ekgid command. They are errgid
(which formats and displays an error message), helpgid (which formats and
displays a help message), and valgid (which validates a response). These
modules should be used in conjunction with FML objects. In this instance, the
FML object defines the prompt.

The options and arguments for this command are:

~
-w width

-d default

-h help
-e error
-pprompt
-kpid

-s signal

input

Specifies that quit will not be allowed as a valid response.
Specifies that prompt, help and error messages will be formatted to a
line length of width.
Displays a list of all groups when help is requested or when the user
makes an error.
Defines the default value as default. The default is not validated and
so does not have to meet any criteria.
Defines the help messages as help.
Defines the error message as error.
Defines the prompt message as prompt.
Specifies that process ID pid is to be sent a signal if the user chooses
to abort.
Specifies that the process ID pid defined with the -Ie option is to be
sent signal signal when quit is chosen. If no signal is specified,
SIGTERM is used.
Input to be verified against /ete/group

Page 1

ckgid (1) ckgid (1)

EXIT CODES

NOTES

Page 2

o = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)

The default prompt for ckgid is:

Enter the name of an existing group [?,q]:

The default error message is:

ERROR - Please enter the name of an existing group.
(if the -m option of ckgid is used, a list of valid groups is displayed here)

The default help message is:

Please enter an existing group name.
(if the -In option of ckgid is used, a list of valid groups is displayed here)

When the quit option is chosen (and allowed), q is returned along with the return
code 3. The valgid module will not produce any output. It returns zero for
success and non-zero for failure.

10/89

ckint (1) ckint(1)

NAME
ckint - display a prompt; verify and return an integer value

SYNOPSIS
ckint [-Q] [-w width] [-b base] [-d default] [-h help] [-e error] [-p prompt]
[-k pid [-s signal]]

errint [-wJ [-b base] [-e error]
helpint [-w] [-b base] [-h help]
vaUnt [-b base] input

DESCRIPTION

10/89

ckint prompts a user, then validates the response. It defines, among other
things, a prompt message whose response should be an integer, text for help and
error messages, and a default value (which will be returned if the user responds
with a carriage return).

All messages are limited in length to 70 characters and are formatted automati­
cally. Any white space used in the definition (including newline) is stripped.
The -w option cancels the automatic formatting. When a tilde is placed at the
beginning or end of a message definition, the default text will be inserted at that
point, allowing both custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as
defined under NOTES) will be displayed.

Three visual tool modules are linked to the ckint command. They are errint
(which formats and displays an error message), helpint (which formats and
displays a help message), and valint (which validates a response). These
modules should be used in conjunction with FML objects. In this instance, the
FML object defines the prompt. When base is defined in the errint and helpint
modules, the messages will include the expected base of the input.

The options and arguments for this command are:

-Q Specifies that quit will not be allowed as a valid response.

-w

-b

-d

-h

-e

-p

-k

-s

Specifies that prompt, help and error messages will be formatted to a line
length of width.

Defines the base for input. Must be 2 to 36, default is 10.

Defines the default value as default. The default is not validated and so
does not have to meet any criteria.

Defines the help messages as help.

Defines the error message as error.

Defines the prompt message as prompt.

Specifies that process ID pid is to be sent a signal if the user chooses to
abort.

Specifies that the process ID pid defmed with the -k option is to be sent
signal signal when quit is chosen. If no signal is specified, SIGTERM is
used.

Page 1

cklnt(1) cklnt(1)

input Input to be verified against base criterion.

EXIT CODES

NOTES

Page 2

o = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)

The default base 10 prompt for ckint is:

Enter an integer [?, q] :

The default base 10 error message is:

ERROR - Please enter an integer.

The default base 10 help message is:

Please enter an integer.

The messages are changed from "integer" to "base base integer" if the base is set to
a number other than Hr.
When the quit option is chosen (and allowed), q is returned along with the return
code 3. The va lint module will not produce any output. It returns zero for
success and non-zero for failure.

10/89;

ckltem(1) ckltem (1)

NAME
ckitem - build a menu; prompt for and return a menu item

SYNOPSIS
ckitem [~] [-w width] [-uno] [-f file] [-1 label] [[-i invis] [, ...]] [-In max]
[-<1 default] [-h help] [-e error] [-p prompt] [-k pilI [-8 signal]] [choice [...]]

erritem [-W] [-e error] [choice [...]]
he1pint [-W] [-h help] [choice [... J]

DESCRIPTION

10/89

ckitem builds a menu and prompts the user to choose one item from a menu of
items. It then verifies the response. Options for this command define, among
other things, a prompt message whose response will be a menu item, text for
help and error messages, and a default value (which will be returned if the user
responds with a carriage return).

By default, the menu is formatted so that each item is prepended by a number
and is printed in columns across the terminal. Column length is determined by
the longest choice. Items are alphabetized.

All messages are limited in length to 70 characters and are formatted automati­
cally. Any white space used in the definition (including newline) is stripped.
The -W option cancels the automatic formatting. When a tilde is placed at the
beginning or end of a message definition, the default text will be inserted at that
point, allowing both custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as
defined under NarES) will be displayed.

Two visual tool modules are linked to the ckitem command. They are erritem
(which formats and displays an error message) and he1pitem (which formats and
displays a help message). These modules should be used in conjunction with
FML objects. In this instance, the FML object defines the prompt. When choice is
defined in these modules, the messages will describe the available menu choice
(or choices).

The options and arguments for this command are:

~ Specifies that quit will not be allowed as a valid response.

-W

-u
-n
-0

-f

-1

Specifies that prompt, help and error messages will be formatted to a line
length of width.

Specifies that menu items should be displayed as an unnumbered list.

Specifies that menu items should not be displayed in alphabetical order.

Specifies that only one menu token will be returned.

Defines a file, file. which contains a list of menu items to be displayed.
[The format of this file is: token<tab>description. Lines beginning
with a pound sign (#) are designated as comments and ignored.]

Defines a label, label, to print above the menu.

Page 1

ckltem (1) ckltem(1)

-i

-m

-d

-h

-e

-p

-k

-s

Defines invisible menu choices (those which will not be printed in the
menu). (For example, "all" used as an invisible choice would mean it is a
legal option but does not appear in the menu. Any nUmber of invisible
choices may be defined.) Invisible choices should be made known to a
user either in the prompt or in a help message.

Defines the maximum number of menu choices allowed.

Defines the default value as default. The default is not validated and so
does not have to meet any criteria.

Defines the help messages as help.

Defines the error message as error.
Defines the prompt message as prompt.
Specifies that the process ID pid is to be sent a signal if the user chooses to
abort.

Specifies that process ID pili defined with the -k option is to be sent signal
signal when quit is chosen. If no signal is specified, SIGTERM is used.

choice Defines menu items. Items should be separated by white space or new-
line.

SEE ALSO
allocmenu(3X)
printmenu(3X)
setinvis(3X)
setitems(3X)

EXIT CODES

NOTES

Page 2

o = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)
4 = No choices from which to choose

The user may input the number of the menu item if choices are numbered or as
much of the string required for a unique identification of the item. Long menus
are paged with 10 items per page.

When menu entries are defined both in a file (by using the -f option) and also on
the command line, they are usually combined alphabetically. However, if the -n
option is used to suppress alphabetical ordering, then the entries defined in the
file are shown first, followed by the options defined on the command line.

The default prompt for ckitem is:

Enter selecti9n [?,??,q]:

One question mark will give a help message and then redisplay the prompt. Two
question marks Will give a help message and then redisplay the menu label, the
menu and the prompt.

10/89

ckitem(1) ckitem(1)

10/89

The default error message is:

ERROR - Does not match an available menu selection.
Enter one of the following:
- the number of the menu item you wish to select
- the token associated withe the menu item,
- partial string which uniquely identifies the token for the
menu item
- 11 to reprint the menu

The default help message is:

Enter one of the following:
- the number of the menu item you wish to select
- the token associated with the menu item,
- partial string which uniquely identifies the token for the
menu item
- ?? to reprint the menu

When the quit option is chosen (and allowed), q is returned along with the return
code 3.

Page 3

ckkeywd(1) ckkeywd(1)

NAME
ckkeywd - prompts for and validates a keyword

SYNOPSIS
ckkeywd [-0] [-w width] [-d default] [-h help] [-e error] [-p prompt]
[-k pid [-s signal]] [keyword [... lJ

DESCRIPTION
ckkeywd prompts a user and validates the response. It defines, among other
things, a prompt message whose response should be one of a list of keywords,
text for help and error messages, and a default value (which will be returned if
the user responds with a carriage return). The answer returned from this com­
mand must match one of the defined list of keywords.

All messages are limited in length to 70 characters and are formatted automati­
cally. Any white space used in the definition (including newline) is stripped.
The -w option cancels the automatic formatting. When a tilde is placed at the
beginning or end of a message definition, the default text will be inserted at that
point, allowing both custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as
defined under NOTES) will be displayed.

-0 Specifies that quit will not be allowed as a valid response.

-w Specifies that prompt, help and error messages will be formatted to a line
length of width.

-d Defines the default value as default. The default is not validated and so
does not have to meet any criteria.

-h Defines the help messages as help.

-e Defines the error message as error.

-p Defines the prompt message as prompt.

-k Specifies that process ID pid is to be sent a signal if the user chooses to
abort.

-s Specifies that the process ID pid defined with the -k option is to be sent
signal signal when quit is chosen. If no signal is specified, SIGTERM is
used.

keyword
Defines the keyword, or list of keywords, against which the answer will
be verified.

EXIT CODES

10/89

o = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)
4 = No keywords from which to choose

Page 1

ckkeywd(1) ckkeywd(1)

NOTES

Page 2

The default prompt for ckkeywd is:

Enter selection [byuwrd, [•••],?,q]:

The default error message is:

ERROR - Does not match any of the valid selections.
Please enter one of the following keywords:
byuwrd[, ••.]

The default help message is:

Please enter one of the following keywords:
~rd[, ••. J

When the quit option is chosen (and allowed), q is returned along with the return
code 3.

10/89

ckpath(1) ckpath(1)

NAME
ckpath - display a prompt; verify and return a pathname

SYNOPSIS
ckpath Hl] [-Wwidth] [-all] [-blcI9Iy] [-nllolzll [-rtwx] [-dde{ault]
[-h help] [-e error] [-p prompt] [-k pid [-8 signal]]

errpath [-w] [-all] [-blcI9Iy] [-nl[olzll [-rtwx] [-e error]
he1ppath[-W] [-all] [-blcl9ly] [-nllolzll [-rtwx] [-hhelp]
va1path [-all] [-blcl9ly] [-nl[olz]] [-rtwx] input

DESCRIPTION

10/89

ckpath prompts a user and validates the response. It defines, among other
things, a prompt message whose response should be a pathname, text for help
and error messages, and a default value (which will be returned if the user
responds with a carriage return).

The pathname must obey the criteria specified by the first group of options. If no
criteria is defined, the pathname must be for a normal file that does not yet exist.
If neither -a (absolute) or -1 (relative) is given, then either is assumed to be
valid.

All messages are limited in length to 70 characters and are formatted automati­
cally. Any white space used in the definition (including newline) is stripped.
The -w option cancels- the automatic formatting. When a tilde is placed at the
beginning or end of a message definition, the default text will be inserted at that
point, allowing both custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as
defined under NarES) will be displayed.

Three visual tool modules are linked to the ckpath command. They are errpath
(which formats and displays an error message), he1ppath (which formats and
displays a help message), and va1path (which validates a response). These
modules should be used in conjunction with FACE objects. In this instance, the
FACE object defines the prompt.

The options and arguments for this command are:

-0 Specifies that quit will not be allowed as a valid response.
-w Specifies that prompt, help and error messages will be formatted to a line

-a
-1

-b

-c

-g

-y

length of width.

Pathname must be an absolute path.

Pathname must be a relative path.

Pathname must be a block special file.

Pathname must be a character special file.

Pathname must be a regular file.

Pathname must be a directory.

Page 1

ckpath (1) ckpath (1)

-n
-0

-z
-r

-t

-w

Pathname must not exist (must be new).

Pathname must exist (must be old).

Pathname must have a length greater than 0 bytes.

Pathname must be readable.

Pathname must be creatable (touchable). Pathname will be created if it
does not already exist.

Pathname must be writable.

-x Pathname must be executable.

-d Defines the default value as default. The default is not validated and so
does not have to meet any criteria.

-h Defines the help messages as help.
-e Defines the error message as error.

-p Defines the prompt message as prompt.

-k Specifies that process ID pid is to be sent a signal if the user chooses to
abort.

-s Specifies that the process ID pid defined with the -k option is to be sent
signal signal when quit is chosen. If no signal is specified, SIGTERM is
used.

input Input to be verified against validation options.

EXIT CODES

NOTES

o = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)
4 = Mutually exclusive options

The text of the default messages for ckpath depends upon the criteria options
that have been used. An example default prompt for ckpath (using the -a
option) is:

Enter a pathname [?, q] :

An example default error message (using the -a option) is:

ERROR - Invalid pathname entered. A pathname is a filename,
optionally preceded by parent directories.

An example default help message is:

A pathname is a filename, optionally preceded by parent direc­
tories. The pathname you enter:
- must contain 1 to {NAME MAX} characters
- must not contain a spaces or special characters

Page 2 10/89

ckpath (1) ckpath(1)

10/89

NAME_MAX is a system variable that is defined in limits.h.

When the quit option is chosen (and allowed), q is returned along with the return
code 3. The valpath module will not produce any output. It returns zero for
success and non-zero for failure.

Page 3

ckrange(1) ckrange(1)

NAME
ckrange - prompts for and validates an integer

SYNOPSIS
ckrange [-Q] [-w width] [-1 lower] [-u upper] [-b base] [-d default] [-h help]
[-e error] [-p prompt] [-k pid [-8 signal]]

errange [-W] [-1 lower] [-u upper] [-e error]
helprange [-w] [-1 lower] [-u upper] [-h help]
valrange [-1 lower] [-u upper] [-b base] input

DESCRIPTION

10/89

ckrange prompts a user and validates the response. It defines, among other
things, a prompt message whose response should be an integer in the range
specified, text for help and error messages, and a default value (which will be
returned if the user responds with a carriage return).

This command also defines a range for valid input. If either the lower or upper
limit is left undefined, then the range is bounded on only one end.

All messages are limited in length to 70 characters and are formatted automati­
cally. Any white space used in the definition (including newline) is stripped.
The -w option cancels the automatic formatting. When a tilde is placed at the
beginning or end of a message definition, the default text will be inserted at that
point, allowing both custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as
defined under NarES) will be displayed.

Three visual tool modules are linked to the ckrange command. They are
errange (which formats and displays an error message),. helprange (which for­
mats and displays a help message), and val range (which validates a response).
These modules should be used in conjunction with FACE objects. In this
instance, the FACE object defines the prompt.

The options and arguments for this command are:

-Q Specifies that quit will not be allowed as a valid response.

-w

-1

-u

-b

-d

-h

Specifies that prompt, help and error messages will be formatted to a line
length of width.

Defines the lower limit of the range as lower. Default is the machine's
largest negative integer or long.

Defines the upper limit of the range as upper. Default is the machine's
largest positive integer or long.

Defines the base for input. Must be 2 to 36, default is 10.

Defines the default value as default. The default is not validated and so
does not have to meet any criteria.

Defines the help messages as help.

Page 1

ckrange (1) ckrange (1)

-e Defines the error message as error.
-p Defines the prompt message as prompt.
-k Specifies that process ID pid is to be sent a signal if the user chooses to

abort.

-s Specifies that the process ID pid defined with the -k option is to be sent
signal signal when quit is chosen. If no signal is specified, SIGTERM is
used.

input Input to be verified against upper and lower limits and base.

EXIT CODES

NOTES

Page 2

o = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)

The default base 10 prompt for ckrange is:

Enter an integer between lower_bound and upper_bound [q,?]:

The default base 10 error message is:

ERROR P lease enter an integer between lower bound and
upper_bound.

The default base 10 help message is:

P lease enter an integer between lower _bound and upper_bound.

The messages are changed from "integer" to ''base base integer" if the base is set to
a number other than 10.

When the quit option is chosen (and allowed), q is returned along with the return
code 3. The valrange module will not produce any output. It returns zero for
success and non-zero for failure.

10/89

ckstr(1) ckstr(1)

NAME
ckstr - display a prompt; verify and return a string answer

SYNOPSIS
ckstr [-0] [-W width] [[-r regexp] [...)) [-11ength] [-d. default] [-h help] [-e error]
[-p prompt] [-k pid [-s signal))

errstr [-W] [-e error]
he1pstr [-W] [-h help]
va1str input

DESCRIPTION

10/89

ckstr prompts a user and validates the response. It defines, among other things,
a prompt message whose response should be a string, text for help and error
messages, and a default value (which will be returned if the user responds with a
carriage return).

The answer returned from this cOlnmand must match the defined regular expres­
sion and be no longer than the length specified. If no regular expression is given,
valid input must be a string with a length less than or equaJ to the length defined
with no internal, leading or trailing white space. If no length is defined, the
length is not checked. Either a regular expression or a length must be given with
the command.

All messages are limited in length to 70 characters and are formatted automati­
cally. Any white space used in the definition (including newline) is stripped.
The -W option cancels the automatic formatting. When a tilde is placed at the
beginning or end of a message definition, the default text will be inserted at that
point, allowing both custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as
defined under NOTES) will be displayed.

Three visual tool modules are linked to the ckstr command. They are errstr
(which formats and displays an error message), he1pstr (which formats and
displays a help message), and va1str (which validates a response). These
modules should be used in conjunction with FACE objects. In this instance, the
FACE object defines the prompt.

The options and arguments for this command are:

-0 Specifies that quit will not be allowed as a valid response.

-W

-r

-1

-d

Specifies that prompt, help and error messages will be formatted to a line
length of width.

Specifies a regular expression, regexp, against which the input should be
validated. May include white space. If multiple expressions are defined,
the answer must match only one of them.

Specifies the maximum length of the input.

Defines the default value as default. The default is not validated and so
does not have to meet any criteria.

Page 1

ckstr (1) ckstr (1)

-h

-e

-p

-k

-s

Defines the help messages as help.
Defines the error message as error.

Defines the prompt message as prompt.

Specifies that process 10 pid is to be sent a signal if the user chooses to
abort.

Specifies that the process 10 pid defined with the -k option is to be sent
signal signal when quit is chosen. If no signal is specified, SIGTERM is
used.

input Input to be verified against format length and/or regular expression cri­
teria.

EXIT CODES

NOTES

Page 2

o = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)

The default prompt for ckstr is:

Enter an appropriate value [?,q]:

The default error message is dependent upon the type of validation involved.
The user will be told either that the length or the pattern matching failed.

The default help message is also dependent upon the type of validation involved.
If a regular expression has been defined, the message is:

Please enter a string which matches the following pattern:
regexp

Other messages define the length requirement and the definition of a string.

When the quit option is chosen (and allowed), q is returned along with the return
code 3. The valstr module will not produce any output. It returns zero for
success and non-zero for failure.

10/89

cktlme(1) cktlme(1)

NAME
cktime - display a prompt; verify and return a time of day

SYNOPSIS
cktime [-Q] [-w width] [-f format] [-<1 default] [-h help] [-e error] [-p prompt]
[-k pid [-s signal]]

errtime [-W] [-e error] [-f format]
helptime [-W] [-h help] [-f format]
valtime [-f format] input

DESCRIPTION

10/89

cktime prompts a user and validates the response. It defines, among other
things, a prompt message whose response should be a time, text for help and
error messages, and a default value (which will be returned if the user responds
with a carriage return). The user response must match the defined format for the
time of day.

All messages are limited in length to 70 characters and are formatted automati­
cally. Any white space used in the definition (including newline) is stripped.
The -W option cancels the automatic formatting. When a tilde is placed at the
beginning or end of a message definition, the default text will be inserted at that
point, allowing both custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as
defined under NOTES) will be displayed.

Three visual tool modules are linked to the cktime command. They are errtime
(which formats and displays an error message), helptime (which formats and
displays a help message), and valtime (which validates a response). These
modules should be used in conjunction with FML objects. In this instance, the
FML object defines the prompt. When format is defined in the errtime and
helptime modules, the messages will describe the expected format.

The options and arguments for this command are:

-Q Specifies that quit will not be allowed as a valid response.

-W Specifies that prompt, help and error messages will be formatted to a line
length of .width.

-f Specifies the format against which the input will be verified. Possible for­
mats and their definitions are:

%H = hour (00 - 23)
% I hour (00 - 12)
%M minute (00 - 59)
%p ante meridian or post meridian
%r time as %I: %M: %S %p
%R time as %H: %M (the default format)
%S seconds (00 - 59)
%T = time as %H:%M:%S

Page 1

cktlme(1) cktlme(1)

-d Defines the default value as default. The default is not validated and so
does not have to meet any criteria.

-h Defines the help messages as help.
-e Defines the error message as error.

-p Defines the prompt message as prompt.
-k Specifies that process ID pid is to be sent a signal if the user chooses to

abort.

-s Specifies that the process ID pid defined with the -k option is to be sent
signal signal when quit is chosen. If no signal is specified, SIGTERM is
used.

input Input to be verified against format criteria.

EXIT CODES

NOTES

Page 2

o = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)
4 = Garbled format argument

The default prompt for cktime is:

Enter the time of day [?,q]:

The default error message is:

ERROR - Please enter the time of day, using the following for­
mat:
<format>

The default help message is:

Please enter the time of day, using the following format:
<format>

When the quit option is chosen (and allowed), q is returned along with the return
code 3. The valtime module will not produce any output. It returns zero for
success and non-zero for failure.

10/89

ckuld(1} ckuld(1}

NAME
ckuid ~ prompts for and validates a user ID

SYNOPSIS
ckuid [-Q] [-w width] [-nil [-d default] [-h help] [-e error] [--p prompt]
[-k pid [-s signal]]

erruid [-W] [-e error]
helpuid [-W] [-nil [-h help]
valuid input .

DESCRIPTION

10/89

ckuid prompts a user and validates the response. It defines, among other things,
a prompt message whose response should be an existing user ID, text for help
and error messages, and a default value (which will be returned if the user
responds with a carriage return).

All messages are limited in length to 70 characters and are formatted automati­
cally. Any white space used in the definition (including newline) is stripped.
The -W option cancels the automatic formatting. When a tilde is placed at the
beginning or end of a message definition, the default text will be inserted at that
point, allowing both custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as
defined under NOTES) will be displayed.

Three visual tool modules are linked to the ckuid command. They are erruid
(which formats and displays an error message), helpuid (which formats and
displays a help message), and valuid (which validates a response). These
modules should be used in conjunction with FML objects. In this instance, the
FML object defines the prompt.

The options and arguments for this command are:

-Q Specifies that quit will not be allowed as a valid response.

-W Specifies that prompt, help and error messages will be formatted to a line
length of width.

-m Displays a list of all logins when help is requested or when the user
makes an error.

-d Defines the default value as default. The default is not validated and so
does not have to meet any criteria.

-h Defines the help messages as help.

-e

--p

-k

-s

Defines the error message as error.

Defines the prompt message as prompt.

Specifies that process ID pid is to be sent a signal if the user chooses to
abort.

Specifies that the process ID pid defined with the -k option i$ to be sent
signal signal when quit is chosen. If no signal is specified, SIG'J.'i:RM is
used.

ckuld(1) ckuld (1)

input Input to be verified against / etc/passwd.

EXIT CODES

NOTES

Page 2

o = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)

The default prompt for ckuid is:

Enter the login name of an existing user [?,q]:

The default error message is:

ERROR - Please enter the login name of an existing user.
Select the help option (?) for a list of valid login names.
(Last line appears only if the -m option of ckuid is used)

The default help message is:

Please enter the login name of an existing user.
(If the -m option of ckuid is used, a list of valid groups is also displayed.)

When the quit option is chosen (and allowed), q is returned along with the return
code 3. The valuid module will not produce any output. It returns zero for
success and non-zero for failure.

10/89

ckyorn (1) ckyorn (1)

NAME
ckyorn - prompts for and validates yes/no

SYNOPSIS
ckyorn [-Q] [-w width] [-d default] [-h help] [-e error] [-p prompt]
[-k pid [-s signal]]

erryorn [-w] [-e error]
helpyorn [-W] [-h help]
valyorn input

DESCRIPTION
ckyorn prompts a user and validates the response. It defines, among other
things, a prompt message for a yes or no answer, text for help and error mes­
sages, and a default value (which will be returned if the user responds with a car­
riage return).

All messages are limited in length to 70 characters and are formatted automati­
cally. Any white space used in the definition (including newline) is stripped.
The -w option cancels the automatic formatting. When a tilde is placed at the
beginning or end of a message definition, the default text will be inserted at that
point, allowing both custom text and the default text to be displayed.

If the prompt,. help or error message is not defined, the default message (as
defined under NOTES) will be displayed.

Three visual tool modules are linked to the ckyorn command. They are erryorn
(which formats and displays an error message), helpyorn (which formats and
displays a help message), and valyorn (which validates a response). These
modules should be used in conjunction with FACE objects. In this instance, the
FACE object defines the prompt.

The options and arguments for this command are:

-Q Specifies that quit will not be allowed as a valid response.

-W Specifies that prompt, help and error messages will be formatted to a line
length of width.

-d Defines the default value as default. The default is not validated and so
does not have to meet any criteria.

-h Defines the help messages as help.

-e Defines the error message as error.

-p Defines the prompt message as prompt.

-k Specifies that process ID pid is to be sent a signal if the user chooses to
abort.

-s Specifies that the process ID pid defined with the -k option is to be sent
signal signal when quit is chosen. If no signal is specified, SIGTERM is
used.

input Input to be verified as y, yes, Y, Yes, YES or n, no, N, No, NO.

ckyorn(1) ckyorn(1)

EXIT CODES

NOTES

Page 2

o = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)

The default prompt for ckyorn is:

Yes or No [y,n,?,q):

The default error message is:

ERROR - Please enter yes or no.

The default help message is:

To respond in the affinnative, enter y, yes, Y, or YES.
To respond in the negative, enter n, no, N, or NO.

When the quit option is chosen (and allowed), q is returned along with the return
code 3. The valyorn module will not produce any output. It returns zero for
success and non-zero for failure.

10/89

dlspgld(1)

NAME
dispgid - displays a Jist of all valid group names

SYNOPSIS
dispgid

DESCRIPTION

dlspgld(1)

dispgid displays a list of all group names Qn the system (one group per line).

EXIT CODES
o = Successful execution
1 = Cannot read the group file

10/89 Page 1

dlspuld(1)

NAME
dispuid - displays a list of all valid user names

SYNOPSIS
dispuid

DESCRIPTION

dlspuld(1)

dispuid displays a list of all user names on the system (one line per name).
EXIT CODES

o = Successful execution
1 = Cannot read the password file

10/89 Page 1

pkglnfo(1) pkglnfo(1)

NAME
pkginfo - display software package information

SYNOPSIS
pkginfo [-qlxI1] [-pli] [-a arch] [-v version]

[-c category1, [category2 [, ...]]] [pkginst [, pkginst [, ...]]]

pkginfo [-d device [-qlxI1] [-a arch] [-v version]
[-c category1, [category2 [, ..•]]] [pkginst [, pkginst[, ...]]]

DESCRIPTION

10/89

pkginfo displays information about software packages which are installed on the
system (with the first synopsis) or which reside on a particular device or direc­
tory (with the second synopsis). Only the package name and abbreviation for
pre-SVR4 packages will be included in the display.

The options for this command are:

-q

-x

-1

-p

-i

-a
-v

-c

pkginst

-d

Does not list any information, but can be used from a program to
check (i.e., query) whether or not a package has been installed.

Designates an extracted listing of package information. It contains the
package abbreviation, package name, package architecture (if available)
and package version (if available).

Designates long format, which includes all available information about
the designated package(s).

Designates that information should be presented only for partially
installed packages.

Designates that information should be presented only for fully
installed packages.

Specifies the architecture of the package as arch.

Specifies the version of the package as version. "All compatible ver­
sions" can be requested by preceding the version name with a tilde n.
Multiple white space is replaced with a single space during version
comparison.

Selects packages to be display based on the category category.
(Categories are defined in the category field of the pkginfo file.) If
more than one category is supplied, the package must only match one
of the list of categories. The match is not case specific.

Designates a package by its instance. An instance can be the package .
abbreviation or a specific instance (for example, inst. 1 or
inst . beta). All instances of package can be requested by inst. *.
Defmes a device, device, on which the software resides. device can be a
directory pathname or the identifiers for tape, floppy disk, removable
disk, etc. The special token "spool" may be used to indicate the
default installation spool directory.

Page 1

pkginfo (1) p,kginfo (1)

NOTES
Without options, pkginfo lists the primary category, package instance, and name
of all completely installed and partially installed packages. One line per package
selected is produced.

The --p and -i options are meaningless if used in conjunction with the -d
option.

The options -q, -x, and -1 are mutually exclusive.

pkginfo cannot tell if a pre-SVR4 package is only partially installed. It is
assumed that all pre-SVR4 packages are fully installed.

SEE ALSO
pkgadd(1M), pkgask(1M), pkgchk(1M), pkgnM:1M), pkgtrans(1).

Page 2 10/89

pkgmk(1) pkgmk(1)

NAME
pkgmk - produce an installable package

SYNOPSIS
pkgmk [-0] [-d device] [-r rootpath] [-b basdir] [-1 limit] [-a arch]

[-v version] [-p pstamp] [-f prototype] [variable=value ...] [pkginst]
DESCRIPTION

pkgmk produces an installable package to be used as input to the pkgadd com­
mand. The package contents will be in directory structure format.

The command uses the package prototype file as input and creates a pkgmap file.
The contents for each entry in the prototype file is copied to the appropriate
output location. Information concerning the contents (checksum, file size,
modification date) is computed and stored in the pkgmap file, along with attribute
information specified in the prototype file.

-0 Overwrites the same instance, package instance will be overwrit­
ten if it already exists.

-d Creates the package on device. device can be a directory path­
name or the identifiers for a floppy disk or removable disk (for
example, /dev/diskette). The default device is the installation
spool directory.

-r Ignores destination paths in the prototype file. Instead, uses the
indicated rootpath with the source pathname appended to locate
objects on the source machine.

-b Prepends the indicated basedir to locate relocatable objects on the
source machine.

-1 Specifies the maximum size in 512 byte blocks of the output dev­
ice as limit. By default, if the output file is a directory or a
mountable device, pkgmk will employ the df command to
dynamically calculate the amount of available space on the out­
put device. Useful in conjunction with pkgtrans to create pack­
age with datastream format.

-a Overrides the architecture information provided in the pkginfo
file with arch.

-v Overrides version information provided in the pkginfo file with
version.

-p Overrides the production stamp definition in the pkginfo file
with pstamp.

-f Uses the file prototype as input to the command. The default
prototype filename is [Pp]rototype.

variable=value Places the indicated variable in the packaging environment. [See
prototype(4) for definitions of packaging variables.]

pkginst Specifies the package by its instance. An instance can be the
package abbreviation or a specific instance (for example, inst. 1).

10/89 Page 1

pkgmk(1) pkgmk(1)

NOTES
Architecture information is provided on the command line with the -a option or
in the prototype file. If no architecture information is supplied at all, the output
of uname '"111 will be used.

Version information is provided on the command line with the -v option or in
the prototype file. If no version information is supplied, a default based on the
current date will be prOvided.

Command line definitions for both architecture and version override the proto­
type definitions.

SEE ALSO
pkgparam:1), pkgproto(1), pkgtrans(1).

Page 2 10/89

pkgparam (1) pkgparam (1)

NAME
pkgparam - displays package parameter values

SYNOPSIS
pkgparam [-v][-d device] pkginst [param[...]]
pkgparam -f file [-v] [param[...]]

DESCRIPTION
pkgparam displays the value associated with the parameter or parameters
requested on the command line. The values are located in either the pkginfo file
for pkginst or from the specific file named with the -f option.

One parameter value is shown per line. Only the value of a parameter is given
unless the -v option is used. With this option, the output of the command is in
this format:

parameterl=' valuel'
parameter2=' value2 '
parameter3=' value3'

If no parameters are specified on the command line, values for all parameters
associated with the package are shown.

Options and arguments for this command are:

-v Specifies verbose mode. Displays name of parameter and its value.

-d Specifies the device on which a pkginst is stored. It can be a directory
pathname or the identifiers for tape, floppy disk or removable disk (for
example, /var/tnp, /dev/diskette, and /dev/dsk/cldOsO). The
default device is the installation spool directory. If no instance name is
given, parameter information for all packages residing in device is shown.

-f Requests that the command read file for parameter values.

pkginst Defines a specific package instance for which parameter values should be
displayed. The format pkginst." can be used to indicate all instances of a
package.

param Defines a specific parameter whose value should be displayed.

ERRORS

NOTES

If parameter information is not available for the indicated package, the command
exits with a non-zero status.

The -f synopsis allows you to specify the file from which parameter values
should be extracted. This file should be in the same format as a pkginfo file. As
an example, such a file might be created during package development and used
while testing software during this stage.

SEE ALSO
pkgmk(1), pkgparam(3x), pkgproto(1), pgktrans(1).

10/89 Page 1

pkgproto (1) pkgproto (1)

NAME
pkgproto - generate a prototype file

SYNOPSIS
pkgproto [-i] [-c class] [path1["'f'tlth2] .••]

DESCRIPTION

NOTES

pkgproto scans the indicated paths and generates a prototype file that may be
used as input to the pkgmk command.

-i Ignores symbolic links and records the paths as ftype=f (a file) versus
ftype=s(symbolic link) .

-c Maps the class of all paths to class.

path1 Pathname where objects are located.

pllth2 Pathname which should be substituted on output for path1.

If no paths are specified on the command line, standard input is assumed to be a
list of paths. If the pathname listed on the command line is a directory, the con­
tents of the directory is searched. However, if input is read from stdin, a direc­
tory specified as a pathname will not be searched.

By default, pkgproto creates symbolic link entries for any symbolic link encoun­
tered (ftype=s). When you use the -i option, pkgproto creates a file entry for
symbolic links (ftype=f). The prototype file would have to be edited to assign
such file types as "v" (volatile), "e" (editable), or "x" (exclusive directory).
pkgproto detects linked files. If multiple files are linked together, the first path
encountered is considered the source of the link.

EXAMPLE

10/89

The following two examples show uses of pkgproto and a parial listing of the
output produced.

Example 1:
$ pkgproto lusr/bin-bin lusr/usr/bin-usrbin leto-ete
f none bin/seci-/bin/sed 0775 bin bin
f none binI sh-/binl sh 0755 bin daeIoon
f none bin/sort ... /bin/sort 0755 bin bin
f none usrbin/sdb-/usr/bin/sdb 0775 bin bin
f none usrbin/shl-/usr/bin/ahl 4755 bin bin
d none etc/master.d 0755 root daemon
f none etc/master.d/kemel .. /etc/master.d/kemel 0644 root daelOOn
f none ete/rQ"'/etc/rc 0744 root daemon

Example 2:
$ find I -type d -print I pkgproto
d none I 755 root root
d none lusr/bin 755 bin bin
d none lusr 755 root root
d none lusr/bin 775 bin bin
d none lete 755 root root
d none Itmp 777 root root

Page 1

pkgproto (1) pkgproto (1)

SEE ALSO
pkgJNt(l), pkgparanil), pkgtrans(1).

Page 2
10/89

pkgtrans (1) pkgtrans(1)

NAME
pkgtrans - translate package format

SYNOPSIS
pkgtrans [-ions] devicel device2 [pkginstl [pkginst2 [...]]]

DESCRIPTION

NOTES

pkgtrans translates an installable package from one format to another. It
translates:

a file system format to a datastreaIJ;l

a datastream to a file system format

a file system format to another file system format

The options and arguments for this command are:

-i Copies only the pkginfo and pkgmap files.

-0

-n

-s

devicel

device2

pkginst

Overwrites the same instance on the destination device, package
instance will be overwritten if it already exists.

Creates a new instance if any instance of this package already
exists.
Indicates that the package should be written to device2 as a data­
stream rather than as a file system. The default behavior is to write
a file system format on devices that support both formats.

Indicates the source device. The package or packages on this dev­
ice will be translated and placed on device2.
lndicates the destination device. Translated packages will be
placed on this device.

Specifies which package instance or instances on devicel should be
translated. The token all may be used to indicate all packages.
pkginst . * can be used to indicate all instances of a package. If no
packages are defined, a prompt shows all packages on the device
and asks which to translate.

Device specifications can be either the special node name (/dev/diskette) or the
device alias (diskettel). The device spool indicates the default spool directory.
Source and destination devices may not be the same.

By default, pkgtrans will not transfer any instance of a package if any instance
of that package already exists on the destination device. Use of the -n option
will create a new instance if an instance of this package already exists. Use of the
-0 option will overwrite the same instance if it already exists. Neither of these
options are useful if the destination device is a datastream.

EXAMPLE

10/89

The following example translates all packages on the floppy drive
/dev/diskette and places the translations on /trIp.

Page 1

pkgtrans(1) pkgtrans (1)

pkgtrans /dev/diskette /tmp all

The next example translates packages pkql and pkq2 on /tmp and places their
translations (i.e., a datastream) on the 9trackl output device.

pkgtrans /tmp 9trackl pkql pkq2

The next example translates pkql and pkq2 on tmp and places them on the
diskette in a datastream format.

pkgtrans -s /tmp /dev/diskette pkql pkq2

SEE ALSO

Page 2

installf(1M), pkqadd(lM), pkqask(1M), pkqinfo(l), pkgmk(1), pkqparam(l),
pkqproto(1), pkqrm(lM), rem:>vef(1M).

10/89

delsysadm(1M} delsysadm (1 M)

NAME
delsysaclm - sysaclm interface menu or task removal tool

SYNOPSIS
delsysaclm task I [-rl menu

DESCRIPTION
The delsysaclm command deletes a task or menu from the sysadm interface and
modifies the interface directory structure on the target machine.

task I menu The logical name and location of the menu or task within the
interface menu hierarchy. Begin with the top menu main and
proceed to where the menu or the task resides, separating each
name with colons. See EXAMPLES.

If the -r option is used, this command will recursively remove all sub-menus
and tasks for this menu. If the -r option is not used, the menu must be empty.

delsysaclm should only be used to remove items added as "on-line" changes
with the edsysaclm command. Such an addition will have a package instance
tag of ONLINE. If the task or menu (and its sub-menus and tasks) have any
package instance tags other than ONLINE, you are asked whether to continue
with the removal or to exit. Under these circumstances, you probably do not
want to continue and you should rely on the package involved to take the
necessary actions to delete this type of entry.

The command exits successfully or provides the error code within an error mes­
sage.

EXAMPLES
To remove the nfol:lllat task, execute:

delsysaclm main:applications:ndevices:nfol:lllat.

DIAGNOSTICS

NOTES

10/89

o Successful execution
2 Invalid syntax
3 Menu or task does not exist
4 Menu not empty
5 Unable to update interface menu structure

Any menu that was' originally a placeholder menu (one that only appears if sub­
menus exist under it) will be returned. to placeholder status when a deletion
leaves it empty.

When the -r option is used, delsysaclm checks for dependencies before removing
any subentries. (A dependency exists if the menu being removed contains an
entry placed there by an application package). If a dependency is found, the user
is shown a list of packages that depend on the menu being deleted and asked
whether or not to continue. If the answer is yes, the menu and all of its menus
and tasks are removed (even those shown to have dependencies). If the answer is
no, the menu is not deleted.

Page 1

delsysadm (1 M) delsysadm (1 M)

delsysadm should only be used to remove menu or task entries that have been
added to the interface with edsysadm.

SEE ALSO
edsysadn(lN.O,sysadn(lN.O.

Page 2 10/89

edsysadm(1M) edsysadm(1M)

NAME
edsysadm - sysadm interface editing tool

SYNOPSIS
edsysadm

DESCRIPTION

10/89

edsysadm is an interactive tool that adds or changes either menu and task
definitions in the sysadm interface. It can be used to make changes directly on­
line on a specific machine or to create changes that will become part of a software
package. The command creates the administration files necessary to achieve the
requested changes in the interface and either places them in the appropriate place
for on-line changes or saves them to be included in a software package.

edsysadm presents several screens, first prompting for which type of menu item
you want to change, menu or task, and then for what type of action to take, add.
or change. When you select add, a blank menu or task definition (as described
below) is provided for you to fill in. When you select change, a series of screens
is presented to help identify the definition you wish to change. The final screen
presented is the menu or task definition filled in with its current values, which
you can then edit.

The menu definition prompts and their descriptions are:

Menu Name The name of the new menu (as it should appear in the

Menu Description

Menu Location

left hand column of the screen). This field has a max­
imum length of 16 alphanumeric characters.

A description of the new menu (as it should appear in
the righthand column of the screen). This field has a
maximum length of 58 characters and can consist of
any alphanumeric character except at sign (@), carat
n, tilde n, back grave ('), grave ('), and double
quotes (").

The location of the menu in the menu hierarchy,
expressed as a menu pathname. The pathname
should begin with the main menu followed by all
other menus that must be traversed (in the order they
are traversed) to access this menu. Each menu name
must be separated by colons. For example, the menu
location for a menu entry being added to the Applica­
tions menu is main: applications. Do not include the
menu name in this location definition. The complete
pathname to this menu entry will be the menu loca­
tion plus the menu name defined at the first prompt.

This is a scrollable field, showing a maximum of 50
alphanumeric characters at a time.

Page 1

edsysadm(1M)

Menu Help File Name

edsysadm (1 M)

Pathname to the item help file for this menu entry. If
it resides in the directory from which you invoked
edsysadm, you do not need to give a full pathname.
If you name an item help file that does not exist, you
are placed in an editor (as defined by $EDITOR) to
create one. The new file is created in the current
directory and named Help.

The task definition prompts and their descriptions are:

Task Name

Task Description

Task Location

Task Help File Name

Task Action

Task Files

Page 2

The name of the new task (as it should appear in the
lefthand column of the screen). This field has a max­
imum length of 16 alphanumeric characters.

A description of the new task (as it should appear in
the righthandcolumn of the screen). This field has a
maximum length of 58 characters and can consist of
any alphanumeric character except at sign (@), carat
n, tilde n, back grave (,), grave ('), and double
quotes (").

The location of the task in the menu hierarchy,
expressed as a pathname. The pathname should
begin with the main menu followed by all other
menus that must be traversed (in the order they are
traversed) to access this task. Each menu name must
be separated by colons. For example, the task loca­
tion for a task entry being added to the applications
menu is main: applications. Do not include the task
name in this location definition. The complete pathname
to this task entry will be the task location as well as
the task name defined at the first prompt.

This is a scrollable field, showing a maximum of 50
alphanumeric characters at a time.

Pathname to the item help file for this task entry. If it
resides in the directory from which you invoked
edsysadm, you do not need to give a full pathname.
If you name an item help file that does not exist, you
are placed in an editor (as defined by $EDITOR) to
create one. The new file is created in the current
directory and named Help. .

The FACE form name or executable that will be run
when this task is selected. This is a scrollable field,
showing a maximum of 58 alphanumeric characters at
a time. This pathname can be relative to the current
directory as well as absolute.

Any FACE objects or other executables that support
the task action listed above and might be called from
within that action. Do not include the help file name or
the task action in this list. Pathnames can be relative to

10/89

edsysadm (1 M) edsysadm (1 M)

NOTES

the current directory as well as absolute. A dot (.)
implies "all files in the current directory" and includes
files in subdirectories.

This is a scrollable field, showing a maximum of 50
alphanumeric characters at a time.

Once the menu or task has been defined, S(:reens for installing the menu or task
or saving them for packaging are presented. The package creation or on-line ins­
tallation is verified and you are informed upon completion.

For package creation or modification, this command automatically creates a menu
information file and a prototype file in the current directory (the directory from
which the command is executed). The menu information file is used during pack­
age installation to modify menus in the menu structure. A prototype file is an
installation file which gives a listing of package contents. The prototype file
created by edsysadm lists the files defined under task action and gives them the
special installation class of "admin". The contents of this prototype file must be
incorporated in the package prototype file.

For on-line installation, edsysadm automatically creates a menu information file
and adds or modifies the interface menu structure directly.

The item help file must follow the format shown in the Application Programmer's
Guide in the "Customizing the Administration Interace" chapter or in the System
Administrator's Guide in the "Customizing the sysadm Interface" appendix.

SEE ALSO
delsysadm(lM), pkgmk(1), prototype(4), sysadm(lM)

10/89 Page 3

Installf(1M) Installf(1M)

NAME
installf - add a file to the software installation database

SYNOPSIS
installf [-c class] pkginst pathname [{type [[major minor]

[mode owner group]]

installf [-c class] pkginst -

installf -f [-c class] pkginst

DESCRIPTION

10/89

installf informs the system that a pathname not listed in the pkgmap file is
betng created or modified. It should be invoked be{ore any file modifications
have occurred.

When the second synopsis is used, the pathname descriptions will be read from
standard input. These descriptions are the same as would be given in the first
synopsis but the information is given in the form of a list. (The descriptions
should be in the form: pathname [{type [[major minor] [mode owner group]].)

After all files have been appropriately created and/or modified, installf
should be invoked with the -f synopsis to indicate that installation is final.
Links will be created at this time and, if attribute information for a pathname was
not· specified during the original invocation of installf or was not already
stored on the system, the current attribute values for the pathname will be stored.
Otherwise, installf verifies that attribute values match those given on the com~
mand line, making corrections as necessary. In all cases, the current content
information is calculated and stored appropriately.

-c class Oass to which installed objects should be associated. Default class is
none.

pkginst Name of package instance with which the pathname should be associ­
ated.

pathname Pathname that is being created or modified.

{type A one-character field that indicates the file type. Possible file types
include:

f
e
v
d
x
1
P
c
b
s

a standard executable or data file
a file to be edited upon installation or removal
volatile file (one whose contents are expected to change)
directory
an exclusive directory
linked file
named pipe
character special device
block special device
symbolic link

Page 1

Installf(1M) Installf(1M)

NOTES

Page 2

major

minor

mode

owner

group

-f

The major device number. The field is only specified for block or
character special devices.

The minor device number. The field is only specified for block or
character special devices.

The octal mode of the file (for example, 0664). A question mark (1)
indicates that the mode will be left unchanged, implying that the file
already exists on the target machine. This field is not used for linked
or symbolically linked files.

The owner of the file (for example, bin or root). The field is limited
to 14 characters in length. A question mark (1) indicates that the
owner will be left unchanged, implying that the file already exists on
the target machine. This field is not used for linked or symbolically
linked files.

The group to which the file belongs (for example, bin or sys). The
field is limited to 14 characters in length. A question mark (?) indi­
cates that the group will be left unchanged, implying that the file
already exists on the target machine. This field is not used for linked
or symbolically linked files.

Indicates that installation is complete. This option is used with the
final invocation of installf (for all files of a given class).

When /tYpe is specified, all applicable fields, as shown below, must be defined:

/tYpe
p x d f v or e
c or b

Required Fields
mode owner group
major minor mode owner group

The installf command will create directories, named pipes and special devices
on the original invocation. Links are created when installf is invoked with the
-f option to indicate installation is complete.

Links should be specified as pathl-path2. pathl indicates the destination and
path2 indicates the source file.

Files installed with installf will be placed in the class none, unless a class is
defined with the command. Subsequently, they will be removed when the associ­
ated package is deleted. If this file should not be deleted at the same time as the
package, be certain to assign it to a class which is ignored at removal time. If
special action is required for the file before removal, a class must be defined with
the command and an appropriate class action script delivered with the package.

When classes are used, installf must be used as follows:
installf -c classl ...
installf -f -c classl ...
installf -c class2 ...
installf -f -c class2 ...

10/89

Installf(1M) Installf(1M)

EXAMPLE
The following example shows the use of installf invoked from an optional
preinstall or postinstall script:

tcreate /dev/xt directory
t(needs to be done before drvinstall)
installf $PKGINST /dev/xt d 755 root sys I I

exit 2
majna-'/usr/sbin/drvinstall ~ /etc/master.d/xt

-d $BASEDIR/data/xt.o -v1.0' II
exit 2

i-CO
while [$i -It $limit]
do

for j in 0 1 2 3 4 5 6 7
do

echo /dev/xtij c $majno 'expr $i * 8 + $j'
644 root sys I

echo /dev/xtij-/dev/xt/ij
done
i='expr $i + l'
[$i -le 9] && i-"O$i" tadd leadinq zero

done I installf $PKGINST - I I exit 2
t finalized installation, create links
installf -f $PKGINST II exit 2
.ft 1

SEE ALSO

10/89

pkqadd(lM), pkqask(1M), pkqchk(1), pkqinfo(1), pkgmk(1), pkgparam(l),
pkgproto(1), pkqtrans(1), pkqrnilM), reIOOVef(1M).

Page 3

pkgadd(1M) pkgadd(1M)

NAME
pkgadd - transfer software package to the system

SYNOPSIS
pkgadd [-d device) [-r response) [-n) [-a admin] [pkginstl [pkginst2[...)))

pkgadd -s spool [-d device) [pkginstl [pkginst2[...)))

DESCRIPTION

NOTES

10/89

pkgadd transfers the contents of a software package from the distribution
medium or directory to install it onto the system. Used without the -d option,
pkgadd looks in the default spool directory for the package (var/spool/pkg).
Used with the -s option, it reads the package to a spool directory instead of ins­
talling it.

-d Installs or copies a package from device. device can be a full path name
to a directory or the identifiers for tape, floppy disk or removable disk
(for example, /var/trrp, /dev/diskette, or diskettel). It can also
be the device alias.

-r

-n

-a

pkginst

-s

Identifies a file or directory, response, which contains output from a
previous pkgask session. This file supplies the interaction responses
that would be requested by the package in interactive mode. response
must be a full pathname.

Installation occurs in non-interactive mode. The default mode is
interactive.

Defines an installation administration file, admin, to be used in place of
the default administration file. The token none overrides the use of
any admin file, and thus forces interaction with the user. Unless a full
path name is given, pkgadd looks in the var/sadm/install/admin
directory for the file.

Specifies the package instance or list of instances to be installed. The
token all may be used to refer to all packages available on the source
medium. The format pkginst. * can be used to indicate all instances of
a package.

Reads the package into the directory spool instead of installing it.

When executed without options, pkgadd users /var/spool/pkg (the default
spool directory).

When transferring a package to a spool directory, the -r, -n, and -a options can­
not be used.

The -r option can be used to indicate a directory name as well as a filename.
The directory can contain numerous response files, each sharing the name of the
package with which it should be associated. This would be used, for example,
when adding multiple interactive packages with one invocation of pkgadd Each
package would need a response file. If you create response files with the same
name as the package (i.e. packagel and package2), then name the directory in which
these files reside after the -r.

Page 1

pkgadd(1M) pkgadd(1M)

Page 2

The -n option will cause the installation to halt if any interaction is needed to
complete it.

10/89

pkgask(1M) pkgask(1M)

NAME
pkgask - stores answers to a request script

SYNOPSIS
pkgask [-<1 device) -r response pkginst [pkginst [...))

DESCRIPTION

NOTES

pkgask allows the administrator to store answers to an interactive package (one
with a request script). Invoking this command generates a response file that is
then used as input at installation time. The use of this response file prevents any
interaction from occurring during installation since the file already contains all of
the information the package needs.

-d Runs the request script for a package on device. device can be a direc­
tory pathname or the identifiers for tape, floppy disk or removable
disk (for example, /var/tIf{J, /dev/diskette, and /dev/dsk/cldOsO).
The default device is the installation spool directory.

-r

pkginst

Identifies a file or directory, which should be created to contain the
responses to interaction with the package. The name must be a full
pathname. The file, or directory of files, can later be used as input to
the pkgadd command.

Specifies the package instance or list of instances for which request
scripts will be created. The token all may be used to refer to all
packages available on the source medium.

The -r option can be used to indicate a directory name as well as a filename.
The directory name is used to create numerous response files, each sharing the
name of the package with which it should be associated. This would be used, for
example, when you will be adding multiple interactive packages with one invoca­
tion of pkgadd. Each package would need a response file. To create multiple
response files with the same name as the package instance, name the directory in
which the files should be created and supply multiple instance names with the
pkgask command. When installing the packages, you will be able to identify this
directory to the pkgadd command.

SEE ALSO

10/89

installf(1M), pkgadd(1M), pkgchk(1), pkgmk(1), pkginfo(1), pkgparam(l),
pkgproto(l), pkgtrans(1), pkgrnilM), reIOOvef(1M).

Page 1

pkgchk(1M) pkgchk(1M)

NAME
pkgchk - check accuracy of installation

SYNOPSIS
pkgchk [-ll-acfqv] [-nx] [-p pathl[,path2 ...] [-i file] [pkginst ...]

pkgchk -ddevice [-1 Iv] [-ppath1[,path2 ...] [-ifi1e] [pkginst ...]

pkgchk ~pkgmap [-e envfi1e] [-ll-acfqv] [-nx] [-ifi1el
[-p path1[, path2 ... J]

DESCRIPTION

10/89

pkgchk checks the accuracy of installed files or, by use of the -1 option, displays
information about package files. The command checks the integrity of directory
structures and the files. Discrepancies are reported on stderr along with a
detailed explanation of the problem.

The first synopsis defined above is used to list or check the contents and/or attri­
butes of objects that are currently installed on the system. Package names may be
listed on the command line, or by default the entire contents of a machine will be
checked.

The second synopsis is used to list or check the contents of a package which has
been spooled on the specified device, but not installed. Note that attributes can­
not be checked for spooled packages.

The third synopsis is used to list or check the contents and/or attributes of
objects which are described in the indicated pkgmap.

The option defmitions are:

-1 Lists information on the selected files that make up a package. It is not
compatible with the a, c, f, g, and v options.

-a

-c

-f

-q

-v

-n

-x

-p

Audits the file attributes only, does not check file contents. Default is to
check both.

Audits the file contents only, does not check file attributes. Default is to
check both.

Corrects file attributes if possible. If used with the -x option, it removes
hidden files. When pkgchk is invoked with this option it creates direc­
tories, named pipes, links and special devices if they do not already exist.

Quiet mode. Does not give messages about missing files.

Verbose mode. Files are listed as processed.

Does not check volatile or editable files. This should be used for most
post-installation checking.

Searches exclusive directories, looking for files which exist that are not in
the installation software database or the indicated pkgmap file.

Only checks the accuracy of the pathname or pathnames listed. pathname
can be one or more pathnames separated by commas (or by white space,
if the list is quoted).

Page 1

pkgchk(1M) pkgchk(1M)

-i Reads a list of pathnames from file and compares this list against the ins­
tallation software database or the indicated pkgmap file. Pathnames which
are not contained in input file are not checked.

-d Specifies the device on which a spooled package resitf~s. device can be a
directory pathname or the identifiers for tape, floppy disk or removable
disk (for example, /var/tJrp or /dev/diskette).

-in Requests that the package be checked against the pkgmap file pkgmap.

-e Requests that the pkginfo file named as envfile be used to resolve parame-

pkginst
ters noted in the specified pkgmap file.

Specifies the package instance or instances to be checked. The format
pkginst . * can be used to check all instances of a package. The default is
to display all information about all installed packages.

SEE ALSO
pkgadd(lM), pkgask(1M), pkginfo(l), pkgnn(lM), pkgtrans(1).

Page 2 10/89

pkgrm(1M) pkgrm(1M)

NAME
pkgl:Ill - removes a package from the system

SYNOPSIS
pkgl:Ill [-nl [-a adminl [pkginstl [pkginst2[... lll

pkgl:Ill -s spool [pkginstl

DESCRIPTION
pkgl:Ill will remove a previously installed or partially installed package from the
system. A check is made to determine if any other packages depend on the one
being removed. The action taken if a dependency exists is defined in the admin
file.

The default state for the command is in interactive mode, meaning that prompt
messages are given during processing to allow the administrator to confirm the
actions being taken. Non-interactive mode can be requested with the -n option.

The -s option can be used to specify the directory from which spooled packages
should be removed.

The options and arguments for this command are:

-n

-a

-s

pkginst

Non-interactive mode. If there is a need for interaction, the com­
mand will exit. Use of this option requires that at least one pack­
age instance be named upon invocation of the command.

Defines an installation administration file, admin, to be used in
place of the default admin file.

Removes the specified package(s) from the directory "spool."

Specifies the package to be removed. The format pkg_abbrev. * can
be used to remove all instances of a package.

SEE ALSO

10/89

installf(1M), pkgadd(1M), pkgask(1M), pkgchlc(1), pkginfo(l), pkgmk(1),
pkgparam(l), pkgproto(l), pkgtrans(1), removef(1M).

Page 1

removef(1M) removef(1M)

NAME
rem:>vef - remove a file from software database

SYNOPSIS
rem:>vef pkginst pathl [path2 ...]

rem:>vef -f pkginst
DESCRIPTION

rem:>vef informs the system that the user, or software, intends to remove a path­
name. Output from rem:>vef is the list of input pathnames that may be safely
removed (no other packages have a dependency on them).

After all files have been processed, rem:>vef should be invoked with the -f option
to indicate that the removal phase is complete.

EXAMPLE
The following shows the use of rem:>vef in an optional pre-install script:

echo "The following files are no longer part of this package
and are being rem:>ved."

rem:>vef $PKGINST /dev/xt[0-9] [0-9] [0-9]
while read pathname
do

done

echo "$pathname"
rm -f $pathname

rem:>vef -f $PKGINST II exit 2
SEE ALSO

installf(lM), pkgadd(lM), pkgask(1M), pkgchk(l), pkginfo(l), pkgmk(1),
pkgproto(l), pkgtrans(l), pkgparam(3X).

10/89 Page 1

compver(4) compver(4)

NAME
conpver - compatible versions file

DESCRIPTION

NOTES

conpver is an ASCII file used to specify previous versions of the associated pack­
age which are upward compatible. It is created by a package developer.

Each line of the file specifies a previous version of the associated package with
which the current version is backward compatible.

Since some packages may require installation of a specific version of another
software package, compatibility information is extremely crucial. Consider, for
example, a package called "A" which requires version "1.0" of application "B" as a
prerequisite for installation. If the customer installing "A" has a newer version of
"B" (version 1.3), the conpver file for "B" must indicate that "1.3" is compatible
with version "1.0" in order for the customer to install package "A".

The comparison of the version string disregards white space and tabs. It is per­
formed on a word-by-word basis. Thus "Version 1.3" and "Version 1.3"
would be considered the same.

EXAMPLE
A sample cOIlpver file is shown below.

Version 1.3
Version 1.0

10/89 Page 1

copyright(4} copyright(4}

NAME
copyright - copyright information file

DESCRIPTION

10/89

copyright is an ASOI file used to provide a copyright notice for a package. The
text may be in any format. The full file contents (including comment lines) is
displayed on the terminal at the time of package installation.

Page 1

depend (4) depend (4)

NAME
depend - software dependencies files

DESCRIPTION
depend is an ASCII file used to specify information concerning software depen­
dencies for a particular package. The file is created by a software developer.

Each entry in the depend file describes a single software package. The instance of
the package is described after the entry line by giving the package architecture
and/or version. The format of each entry and subsequent instance definition is:

type pkg name
(arch)version
(arch)version

The fields are:

type Defines the dependency type. Must be one of the following char­
acters:

P Indicates a prerequisite for installation, for example, the
referenced package or versions must be installed.

Implies that the existence of the indicated package or ver­
sion is incompatible.

R Indicates a reverse dependency. Instead of defining the
package's own dependencies, this designates that another
package depends on this one. This type should be used
only when an old package does not have a depend file but
it relies on the newer package nonetheless. Therefore, the
present package should not be removed if the designated
old package is still on the system since, if it is removed,
the old package will no longer work.

pkg Indicates the package abbreviation.

name Specifies the full package name.

(arch)version Specifies a particular instance of the software. A version name
cannot begin with a left parenthesis. The instance specifications,
both arch and version, are completely optional but must each begin
on a new line that begins with white space. A null version set
equates to any version of the indicated package.

10/89 Page 1

depend (4)

EXAMPLE
Here is a sample depend file:

Page 2

I msvr 3B2 Messaging Server
P ctc Cartridge Tape Utilities
P dfm Directory and File Management Utilities
P ed Editing Utilities
P ipc Inter-Process Communication Utilities
P lp Line Printer Spooling Utilities
P shell Shell Programming Utilities
P sys System Header Files

Release 3.0
P sysadm System Administration Utilities
P term Terminal Filters Utilities
P terminfo Terminal Information Utilities
P usrenv User Environment Utilities
P uucp Basic Networking Utilities
P x25 X.25 Network Interface

Issue 1 Version 1
Issue 1 Version 2

P windowing AT&T Windowing Utilities
(3B2) Version 1

R ems 3B2 Call Management System

depend (4)

10/89

pkginfo(4) pkginfo(4)

NAME
pkginfo - package characteristics file

DESCRIPTION

10/89

pkginfo is an ASCII file that describes the characteristics of the package along
with information that helps control the flow of installation. It is created by the
software package developer.

Each entry in the pkginfo file is a line that establishes the value of a parameter
in the following form:

P ARAM="value"

There is no required order in which the parameters must be specified within the
file. Each parameter is described below. Only fields marked with an asterisk are
mandatory.

PKG* Abbreviation for the package being installed, generally three
characters in length (for example, dir or pkg). All characters in
the abbreviation must be alphanumeric and the first may not be
numeric. The abbreviation is limited to a maximum length of
nine characters. install, new, and all are reserved abbrevia­
tions.

NAME"

ARCH*

VERSION*

CATEGORY"

DESC

VENDOR

HOTLINE

Text that specifies the package name (maximum length of 256
ASCII characters).

A comma-separated list of alphanumeric tokens that indicate the
architecture (for example, 3B2) associated with the package.
The pkgmk tool may be used to create or modify this value
when actually building the package. The maximum length of a
token is 16 characters and it cannot include a comma.

Text that specifies the current version associated with the
software package. The maximum length is 256 ASCII characters
and the first character cannot be a left parenthesis. The pkgmk
tool may be used to create or modify this value when actually
building the package.

A comma-separated list of categories under which a package
may be displayed. A package must at least belong to the sys­
tem or application category. Categories are case-insensitive and
may contain only alphanumerics. Each category is limited in
length to 16 characters.

Text that describes the package (maximum length of 256 ASCII
characters).

Used to identify the vendor that holds the software copyright
(maximum length of 256 ASCII characters).

Phone number and/or mailing address where further informa­
tion may be received or bugs may be reported (maximum
length of 256 ASCII characters).

Page 1

pkginfo(4)

EMAIL

VSTOCK

CLASSES

ISTATES

RSTATES

BASEDIR

UUMIT

ORDER

MAXINST

PSTAMP

INTONLY

PREDEPEND

Page 2

pkglnfo(4)

An electronic address where further information is available or
bugs may be reported (maximum length of 256 ASCII charac­
ters).

The vendor stock number, if any, that identifies this product
(maximum length of 256 ASCII characters).

A space-separated list of classes defined for a package. The
order of the list determines the order in which the classes are
installed. Gasses listed first will be installed first (on a media
by media basis). This parameter may be modified by the
request script.

A list of allowable run states for package installation (for exam­
ple, ItS s 1").

A list of allowable run states for package removal (for example,
ItS S 1").

The pathname to a default directory where "relocatable" files
may be installed. If blank, the package is not relocatable and
any files that have relative pathnames will not be installed. An
administrator can override the default directory.

If set, this parameter is passed as an argument to the ulimit
command, which establishes the maximum size of a file during
installation.

A list of classes defining the order in which they should be put
on the medium. Used by pkgmk in creating the package.
Classes not defined in this field are placed on the medium using
the standard ordering procedures.

The maximum number of package instances that should be
allowed on a machine at the same time. By default, only one
instance of a package is allowed. This parameter must be set in
order to have multiple instances of a package.

Production stamp used to mark the pkgmap file on the output
volumes. Provides a means for distinguishing between produc­
tion copies of a version if more than one is in USe at a time. If
PSTAMP is not defined, the default is used. The default consists
of the UNIX system machine name followed by the string
"YYMMDDHHMM" (year, month, date, hour, minutes).

Indiciltes that the package should only be installed interactively
When set to any non-NULL value.

Used to maintain· compatibility with pre-SVR4 package depen­
dency checking. Pre-SVR4 dependency checks were based on
whether or not the name file for the required package existed in
the·/var/options directory. This directory is not maintained
for SVR4 packages since the depend file is used for checking
dependencies. However, entries can be created in this directory
to maintain compatibility. Setting the PREDEPEND parameter to
y or yes creates a lusr/option entry for the package.

10189

pkginfo(4) pkginfo(4)

(Packages that are new for SVR4 do not need to use this param­
eter.)

EXAMPLES

NOTES

10/89

Here is a sample pkginfo:
PKG="oam"
NAME="OAM Installation Utilities"
VERSION="3"
VENDOR= "AT&T "
HOTLINE=" 1-8 OO-ATT-BUGS "
EMAIL="attunix!olsen"
VSTOCK="0122c3f5566"
CATEGORY=" system. essential"
ISTATES="S 2"
RSTA'l'ES="S 2"

Developers may define their own installation parameters by adding a definition
to this file. A developer-defined parameter must begin with a capital letter.

Page 3

pkgmap(4} pkgmap(4}

NAME
pkgmap - package contents description file

DESCRIPTION

10/89

pkgmap is an ASOI file that provides a complete listing of the package contents.
It is automatically generated by pkgmk(l) using the information in the prototype
file.

Each entry in pkgmap describes a single "deliverable object file." A deliverable
object file includes shell scripts, executable objects, data files, directories, etc. The
entry consists of several fields of information, each field separated by a space.
The fields are described below and must appear in the order shown.

part An optional field designating the part number in which the object
resides. A part is a collection of files, and is the atomic unit by which a
package is processed. A developer can choose the criteria for group­
ing files into a part (e.g., based on class). If no value is defined in this
field, part 1 is assumed.

/tYpe A one-character field that indicates the file type. Valid values are:

f a standard executable or data file
e a file to be edited upon installation or removal
v volatile file (one whose contents are expected to change)
d directory
x an exclusive directory
1 linked file
p named pipe
c character special device
b block special device
i installation script or information file
s symbolic link

class The installation class to which the file belongs. This name must con­
tain only alphanumeriC characters and be no longer than 12 characters.
It is not specified if the ftype is i (information file).

pathname The pathname where the object will reside on the target machine, such
as /usr/bin/mail. Relative pathnames (those that do not begin with
a slash) indicate that the file is relocatable.

For linked files (ftype is either lor s), pathname must be in the form
of pathl==path2, with pathlspecifying the destination of the link and
path2 specifying the source of the link.

pathname may contain variables which support relocation of the file. A
$parameter may be embedded in the pathname structure. $BASEDIR
can be used to identify the parent directories of the path hierarchy,
making the entire package easily relocatable. Default values for param­
eter and BASEDIR must be supplied in the pkginfo file and may be
overridden at installation.

Page 1

pkgmap(4) pkgmap(4)

Page 2

major

minor

mode

owner

group

The major device number. The field is only specified for block or
character special devices.

The minor device number. The field is only specified for block or
character special devices.

The octal mode of the file (for example, 0664). A question mark (?)
indicates that the mode will be left unchanged, implying that the file
already exists on the target machine. This field is not used for linked
files, packaging information files or non-installable files.

The owner of the file (for example, bin or root). The field is limited
to 14 characters in length. A question mark (?) indicates that the
owner will be left unchanged, implying that the file already exists on
the target machine. This field is not used for linked files or non­
installable files. It is used optionally with a package infonnation file.
If used, it indicates with what owner an installation script will be exe­
cuted.

Can be a variable specification in the form of $[A-Zl. Will be resolved
at installation time.

The group to which the file belongs (for example, "bin" or "sys"). The
field is limited to 14 characters in length. A question mark (?) indi­
cates that the group will be left unchanged, implying that the file
already exists on the target machine. This field is not used for linked
files or non-installable files. It is used optionally with a package infor­
mation file. If used, it indicates with what group an installation script
will be executed.

Can be a variable assignment in the form of $ [A-Z]. Will be resolved
at installation time.

size The actual size of the file in bytes. This field is not specified for
named pipes, special devices, directories or linked files.

cksum The checksum of the file contents. This field is not specified for
named pipes, special devices, directories or linked files.

modtime The time of last modification, as reported by the stat(2) function call.
This field is not specified for named pipes, special devices, directories
or linked files.

Each pkgmap must have one line that provides information about the number and
maximum size (in 512-byte blocks) of parts that make up the package. This line
is in the following format:

: number _ofyarts maximum yart _size
Lines that begin with "1" are comment lines and are ignored.

~en files are saved during installation before they are overwritten, they are nor­
mally just copied to a temporary pathname. However, for files whose mode
includes execute permission (but which are not editable), the existing version is
linked to a temporary pathname and the original file is removed. This allows
processes which are executing during installation to be overwritten.

10/89

pkgmap(4} pkgmap(4}

EXAMPLES
The following is an example of a pkgmap file.

NOTES

10/89

:2 500
1 i pkqinfo 237 1179 541296672
1 b class1 /dev/diskette 17 134 0644 root other
1 c class1 /dev/rdiskette 17 134 0644 root other
1 d none bin 0755 root bin
1 f none bin/INSTALL 0755 root bin 11103 17954 541295535
1 f none bin/REMOVE 0755 root bin 3214 50237 541295541
1 1 none bin/UNINSTALL=bin/REMOVE
1 f none bin/cmda 0755 root bin 3580 60325 541295567
1 f none bin/cmdb 0755 root bin 49107 51255 541438368
1 f class1 bin/cmdc 0755 root bin 45599 26048 541295599
1 f class1 bin/cmdd 0755 root bin 4648 8473 541461238
1 f none bin/cmde 0755 root bin 40501 1264 541295622
1 f class2 bin/cmdf 0755 root bin 2345 35889 541295574
1 f none bin/cmdg 0755 root bin 41185 47653 541461242
2 d class2 data 0755 root bin
2 P class1 data/apipe 0755 root other
2 d none log 0755 root bin
2 v none log/logfile 0755 root bin 41815 47563 541461333
2 d none save 0755 root bin '
2 d none spool 0755 root bin
2 d none tmp 0755 root bin

The pkgmap file may contain only one entry per unique pathname.

Page 3

prototype (4) prototype (4)

NAME
prototype - package information file

DESCRIPTION

10/89

prototype is an ASCII file used to specify package information. Each entry in the
file describes a single deliverable object. An object may be a data file, directory,
source file, executable object, etc. This file is generated by the package developer.

Entries in a prototype file consist of several fields of information separated by
white space. Comment lines begin with a "t" and are ignored. The fields are
described below and must appear in the order shown.

part An optional field designating the part number in which the object
resides. A part is a collection of files, and is the atomic unit by which a
package is processed. A developer can choose criteria for groupig files
into a part (e.g., based on class). If this field is not used, part 1 is
assumed.

{type A one-character field which indicates the file type. Valid values are:

f a standard executable or data file
e a file to be edited upon installation or removal
v volatile file (one whose contents are expected to change)
d directory
x an exclusive directory
1 linked file
p named pipe
c character special device
b block special device
i installation script or information file
s symbolic link

c1llss The installation class to which the file belongs. This name must con­
tain only alphanumeric characters and be no longer than 12 characters.
The field is not specified for installation scripts. (admin and all classes
beginning with capital letters are reserved class names.)

pathname The pathname where the file will reside on the target machine, e.g.,
/usr/bin/mail or bin/ras.,j)roc. Relative pathnames (those that do
not begin with a slash) indicate that the file is relocatable. The form

pathl =path2

may be used for two purposes: to define a link and to define local
pathnames.

For linked files, pathl indicates the destination of the link and path2
indicates the source file. (This format is mandatory for linked files.)

For local pathnames, pathl indicates the pathname an object should
have on the machine where the entry is to be installed and path2 indi­
cates either a relative or fixed pathname to a file on the host machine
which contains the actual contents. .

Page 1

prototype(4) prototype (4)

Page 2

major

minor

mode

owner

group

A pathname may contain a variable specification, which will be
resolved at the time of installation. This specification should have the
form $[A-Z).

The major device number. The field is only specified for block or
character special devices.

The minor device number. The field is only specified for block or
character special devices.

The octal mode of the file (for example, 0664). A question mark (?)
indicates that the mode will be left unchanged, implying that the file
already exists on the target machine. This field is not used for linked
files or packaging information files.

The owner of the file (for example, bin or root). The field is limited
to 14 characters in length. A question mark (?) indicates that the
owner will be left unchanged, implying that the file already exists on
the target machine. This field is not used for linked files or packaging
information files.

Can be a variable specification in the form of $ [A-Z]. Will be
resolved at installation time.

The group to which the file belongs (for example, bin or sys). The
field is limited to 14 characters in length. A question mark (?) indi­
cates that the group will be left unchanged, implying that the file
already exists on the target machine. This field is not used for linked
files or packaging information files.

Can be a variable specification in the form of $[A-Z). Will be resolved
at installation time.

An exclamation point (!) at the beginning of a line indicates that the line contains
a command. These commands are used to incorporate files in other directories,
to locate objects on a host machine, and to set permanent defaults. The following
commands are available:

search Specifies a list of directories (separated by white space) to search
for when looking for file contents on the host machine. The
basename of the path field is appended to each directory in the
ordered list until the file is located.

include

default

param=value

Specifies a pathname which points to another prototype file to
include. Note that search requests do not span include files.

Specifies a list of attributes (mode, owner, and group) to be used
by default if attribute information is not provided for prototype
entries which require the information. The defaults do not apply
to entries in include prototype files.

Places the indicated parameter in the current environment.

The above commands may have variable substitutions embedded within them, as
demonstrated in the two example prototype files below.

10/89

prototype (4) prototype (4)

Before files are overwritten during installation, they are copied to a temporary
pathname. The exception to this rule is files whose mode includes execute per­
mission, unless the file is editable (i.e, ftype is e). For files which m~ this excep-

. tion, the existing version is linked to a temporary pathname, and the original file
is removed. This allows processes which are executing during installation to be
overwritten.

EXAMPLES

10189

Example 1:

!PROJDIR=/usr/proj
!BIN-$PROJDIR/bin
!CFG-$PROJDIR/cfg
!LIB=$PROJDIR/lib
! HDRS-$PROJDIR/hdrs
!search /usr/myname/usr/bin /usr/myname/src /usr/myname/hdrs
i pkginfo-/usr/myname/wrap/pkginfo
i depend-/usr/myname/wrap/depend
i version-/usr/myname/wrap/version
d none /usr/wrap 0755 root bin
d none /usr/wrap/usr/bin 0755 root bin
I search $BIN
f none /usr/wrap/bin/INSTALL 0755 root bin
f none /usr/wrap/bin/REMOVE 0755 root bin
f none /usr/wrap/bin/addpkg 0755 root bin
!default 755 root bin
f none /usr/wrap/bin/audit
f none /usr/wrap/bin/listpkg
f none /usr/wrap/bin/pkgmk
t tbe following file starts out zero length but grows
v none /usr/wrap/logfile-/dev/null 0644 root bin
t the following specifies a link (dest=src)
1 none /usr/wrap/src/addpkg=/usr/wrap/bin/rmpkg
! search $SRC
!default 644 root other
f src /usr/wrap/src/INSTALL.sh
f src /usr/wrap/src/REMOVE.sh
f src /usr/wrap/src/addpkg.c
f src /usr/wrap/src/audit.c
f src /usr/wrap/src/listpkg.c
f src /usr/wrap/src/pkgmk.c
d none /usr/wrap/data 0755 root bin
d none /usr/wrap/save 0755 root bin
d none /usr/wrap/spool 0755 root bin
d none /usr/wrap/tmp 0755 root bin
d src /usr/wrap/src 0755 root bin

Page 3

prototype (4) prototype (4)

Example 2:

t this prototype is generated by 'pkgproto' to refer
t to all prototypes in ~ src directory
!PROJDIR-/usr/dew/projx
linclude $PROJDIR/src/cmd/prototype
!include $PROJDIR/src/cmd/audmerg/protofile
!include $PROJDIR/src/lib/proto

SEE ALSO

NOTES

Page 4

pkginfo(4), pkgmk(l).

Normally, if a file is defined in the prototype file but does not exist, that file is
created at the time of package installation. However, if the file pathname
includes a directory that does not exist, the file will not be created. For example,
if the prototype file has the following entry:

f none /usr/dev/bin/command
and that file does not exist, it will be created if the directory /usr/dev/bin
already exists or if the prototype also has an entry defining the directory:

d none /usr/dev/bin

10/89

space (4) space (4)

NAME
space - disk space requirement file

DESCRIPTION
space is an ASCI file that gives information about disk space requirements for
the target environment. It defines space needed beyond that which is used by
objects defined in the prototype file-for example, files which will be installed
with the installf command. It should define the maximum amount of addi-

. tional space which a package will require.

The generic format of a line in this file is:

pathname blocks inodes

Definitions for the fields are as follows:

pathname Specifies a directory name which mayor may not be the mount point
for a filesystem. Names that do not begin with a slash (/) indicate
relo~table directories.

blocks Defines the number of disk blocks required for installation of the files
and directory entries contained in the pathname (using a 512-byte
block size).

inodes Defines the number of inodes required for installation of the files and
directory entries contained in the pathname.

EXAMPLE
t extra space required ~ config data which is
t dynamically loaded onto the system
data 500 1

SEE ALSO
installf(1M), prototype(4)

10/89 Page 1

c Package Installation Case
Studies

Introduction

Case #1
Techniques
Approach
Sample Files

Case #2
Techniques
Approach
Sample Files

Case #3
Techniques
Approach
Sample Files

Case #4
Techniques
Approach
Sample Files

Table of Contents

C-1

C-2
C-2
C-2
C-4

C-7
C-7
C-7
C-9

C-13
C-13
C-13
C-15

C-19
C-19
C-19
C-20

Table of Contents _____________________ _

Case #5a C-22
Techniques C-22
Approach C-22
Sample Files C-23

Case #5b C-26
Techniques C-26
Approach C-26
Sample Files C-27

Case #5c C-30
Techniques C-30
Approach C-30

Case #6 C-33
Techniques C-33
Approach C-33
Sample Files C-34

Ii System Services and Application Packaging Tools

Introduction

This appendix presents packaging case study in order to show packaging tech­
niques such as installing objects conditionally, detennining at run time how
many files to create, and how to modify an existing data file during package
installation and removal.

Each case begins with a description of the study, followed by a list of the pack­
aging techniques it uses and a narrative description of the approach taken when
using those techniques. After this material, sample files and scripts associated
with the case study are shown.

Package Installation Case Studies C-1

Case #1

This package has three types of objects. The installer may choose which of the
three types to install and where to locate the objects on the installation machine.

Techniques

This case study shows examples of the following techniques:

• using variables in object pathnames

• using the request script to solicit input from the installer

• setting conditional values for an installation parameter

Approach

To set up selective installation, you must:

C-2

• Define a class for each type of object which can be installed.

In this case study, the three object types are the package executables, the
manual pages, and the emacs executables. Each type has its own class:
bin, man, and emacs, respectively. Notice in the prototype file, shown in
Figure C-2, that all of the object files belong to one of these three classes.

• Initialize the CLASSES parameter in the pkginfo file as null.

Normally when you define a class, you want the CLASSES parameter to
list all classes that will be installed. Otherwise, no objects in that class
will be installed. For this example, the parameter is initially set to null.
CLASSES will be given values by the request script, based on the package
pieces chosen by the installer. This way, CLASSES is set to only those
object types that the installer wants installed. Figure C-l shows the
pkginfo file associated with this package. Notice that the CLASSES
parameter is set to null.

• Define object pathnames in the prototype file with variables.

These variables will be set by the request script to the value which the
installer provides. pkgadd resolves these variables at installation time and
so knows where to install the package.

System Services and Application Packaging Tools

Case #1

The three variables used in this example are:

o $NCMPBIN (defines location for object executables)

o $NCMPMAN (defines location for manual pages)

o $EMACS (defines location for emacs executables)

Look at the example prototype file (Figure C-2) to see how to define the
object pathnames with variables .

• Create a request script to ask the installer which parts of the package
should be installed and where they should be placed.

The request script for this package, shown in Figure C-3, asks two ques­
tions:

o Should this part of the package be installed?

When the answer is yes, then the appropriate class name is added to
the CLASSES parameter. For example, when the question "Should
the manual pages associated with this package be installed" is
answered yes, the class man is added to the CLASSES parameter.

o If so, where should that part of the package be placed?

The appropriate variable is given the value of the response to this
question. In the manual page example, the variable $NCMPMAN is set
to this value.

These two questions are repeated for each of the three object types.

At the end of the request script, the parameters are made available to the
installation environment for pkgadd and any other packaging scripts. In
the case of this example, no other scripts are provided.

When looking at the request script for this example, notice that the ques­
tions are generated by the data validation tools ckyorn and ckpath.

Package Installation Case Studies C-3

Case #1

Sample Files

Figure C-1: case #1 pkginfo File

Figure C-2: case #1 prototype File

C-4 System Services and Application Packaging Tools

Case #1

Figure C-3: Case Study #1 Request Script

Package Installation Case Studies C-s

Case #1

Figure C-3: Case Study #1 Request Script (continued)

C-6 System Services and Application Packaging Tools

Case #2

This package installs a driver. A set of device nodes associated with that driver
needs to be created, but the installer will decide how many nodes to create.
After installation, the system needs to be rebooted so that the driver is properly
configured.

Techniques

This case study shows examples of the following techniques:

• installing a driver with a postinstall script

• using an exit code to reboot the system

• allowing the installer to define how many device nodes to create at instal­
lation time

Approach

To install a driver at the time of installation, you must:

• Include the object and master files for the driver in the prototype file.

In this example, the object file for the driver is a data file named qz . o.
This is the file on which the standard UNIX driver install command,
drvinstall, operates. The master. d file is named qz and is used by
drvinstall to help configure the driver.

Looking at Figure C-4 (the prototype file for this example), notice the
following:

o Since no special treatment is required for these files, you can put
them into the standard none class. The CLASSES parameter is set to
none in the pkginfo file (Figure C-5).

o The pathname for qz .0 begins with the variable $BOOTDIR. This
variable will be set in the request script and allows the administrator
to decide where the object file should be installed. The default direc­
tory will be /boot.

Package Installation Case Studies C-7

Case #2

C-s

o There is an entry for the postinstall script (the script that will per­
form the driver installation).

• Create a request script.

The request script, shown in Figure C-6, has two major functions:

o to determine how many device nodes to create for this driver

This is accomplished by questioning the installer and then assigning
the answer to the parameter $NDEVICES. Notice that the data vali­
dation tool ckrange is used and that it limits the response to a
number between 0 and 32. It sets the default number to 8.

If the installer chooses not to install any devices, the CLASSES
parameter is set to null. This means that no classes are defined and
therefore no objects will be installed.

o to determine where the installer wants the driver objects to be
installed

This is accomplished by questioning the installer and assigning the
answer to the $BOOTDIR parameter.

The script ends with a routine to make the three parameters CLASSES,
NDEVICES, and BOOTDIR available to the installation environment and so
to the postinstall script.

• Create a postinstall script.

The postinstall script, shown in Figure C-7, actually performs the driver
installation. It is executed after the two files qz and qz .0 have been
installed. The postinstall shown for this example performs the following
actions:

o checks to see if any devices should be installed (if not, it exits)

o creates the /dev/qz directory using the installf command (this
directory could also be created by putting an entry for it in the pro­
totype file)

o executes the drvinstall command using the two files installed
with this package (the major number is returned to the script at this
time)

System Services and Application Packaging Tools

Case #2

o calculates the minor numbers for installed devices

o installs the device using installf

o creates a link for the device also using installf

o finalizes the installation using installf -f

• Reboot the system upon installation.

This is accomplished by exiting from the postinstall script with an exit
code of 10, meaning that the system should be rebooted upon completing
an error-free installation.

Sample Files

Figure C-4: Case #2 prototype File

Package Installation Case Studies C-9

Case #2

Figure CoS: Case #2 pkginfo File

C-10 System Services and Application Packaging Tools

Case #2

Figure C-6: Case #2 Request Script

Package Installation Case Studies C-11

Case #2

Figure C-7: Case #2 Postinstall Script

C·12 System Services and Application Packaging Tools

Case #3

This study creates a database file at the time of installation and saves a copy of
the database when the package is removed.

Techniques

This case study shows examples of the following techniques:

• using classes and class action scripts to perfonn special actions on dif­
ferent sets of objects

• using the space file to inform pkgadd that extra space will be required
to install this package properly

• using the installf command

Approach

To create a database file at the time of installation and save a copy on removal,
you must:

• Create three classes.

This package requires three classes:

o the standard class of none (contains a set of processes belonging in
the subdirectory bin)

o the admin class (contains an executable file config and a directory
containing data files)

o the cfgdata class (contains a directory)

• Make the package collectively relocatable.

Notice in the prototype file (Figure C-9) that none of the pathnames
begin with a slash or a variable. This indicates that they are collectively
relocatable.

• Calculate the amount of space the database file will require and create a
space file to deliver with the package. This file notifies pkgadd that this
package requires extra space and how much extra space. Figure C-I0
shows the space file for this package.

Package Installation Case Studies C-13

Case #3

• Create an installation class a,ction script for the admin class.

The script, shown in Figure C-ll, initializes a database using the data files
belonging to the admin class. To perform this task, it:

o copies the source data file to its proper destination

o creates an empty file named config. data and assigns it to a class
of cfgdata

o executes the binI config command (delivered with the package
and already installed) to populate the database file config. data
using the data files belonging to the admin class

o executes installf -f to finalize installation

No special action is required for the admin class at removal time so no
removal class action script is created. This means that all files and direc­
tories in the admin class will simply be removed from the system .

• Create a removal class action script for the cfgdata class.

C-14

The script, shown in Figure C-12, makes a copy of the database file before
it is deleted during package removal. No special action is required for
this class at installation time, so no installation class action script is
needed.

Remember that the input to a removal script is a list of pathnames to
remove. Pathnames always appear in lexical order with the directories
appearing first. This script captures directory names so that they can be
acted upon later and copies any files to a directory named Itmp. When
all of the pathnames have been processed, the script then goes back and
removes all directories and files associated with the cfgdata class.

The outcome of this removal script is to copy config. data to Itmp and
then remove the config. data file and the data directory.

System Services and Application Packaging Tools

Case #3

Sample Files

Figure C-8: Case #3 pkginfo File

Figure C-9: Case #3 prototype File

Package Installation Case Studies C-15

Case #3

Figure C-10: case #3 space File

C-16 System Services and Application Packaging Tools

Case #3

Figure C-11: Case #3 Installation Class Action Script (Ladmin)

Package Installation Case Studies C-17

Case #3

Figure C-12: case #3 Removal Class Action Script (r.cfgdata)

C-18 System Services and Application Packaging Tools

Case #4

This package uses the optional packaging files to define package compatibilities
and dependencies and to present a copyright message during installation.

Techniques

This case study shows examples of the following techniques:

• using the copyright file

• using the compver file

• using the depend file

Approach

To meet the requirements in the. description, you must:

• Create a copyright file.

A copyright file contains the ASCII text of a copyright message. The
message shown in Figure C-14 will be displayed on the screen during
package installation (and also during package removal).

• Create a compver file.

The pkginfo file shown in Figure C ... 13 defines this package version as
version 3.0. The compver file, shown in Figure C-1S, defines version 3.0
as being compatible with versions 2.3, 2.2, 2.1, 2.1.1, 2.1.3 and 1.7.

• Create a depend file.

Files listed in a depend file must already be installed on the system when
a package is installed. The example shown in Figure C-16 has 11 pack­
ages which must already be on the system at installation time.

Package Installation Case Studies C·19

Case #4

Sample Files

Figure C-13: Case #4 pkginfo File

Figure C-14: Case #4 copyright File

C-20 System Services and Application Packaging Tools

Case #4

Figure C-15: Case #4 cOIrpver File

Figure C-16: Case #4 depend File

Package Installation Case Studies C-21

Case #5a

This study modifies a file which exists on the installation machine during pack­
age installation. It uses one of three modification methods. The other two
methods are shown in Cases 5b and 5c. The file modified is /sbin/inittab.

Techniques

This case study shows examples of the following techniques:

• using the sed class

• using a postinstall script

Approach

To modify /stiin/inittab at the time of installation, you must:

• Add the sed class script to the prototype file.

The name of a script must be the name of the file that will be edited. In
this case, the file to be edited is /sbin/inittab and so our sed script is
named /sbin/inittab. There are no requirements for the mode owner
group of a sed script (represented in the sample prototype by question
marks). The file type of the sed script must be e (indicating that it is edit­
able). The prototype file for this case study is shown in Figure C-17.

• Set the CLASSES parameter to include 4sed.

In the case of the example shown in Figure C-18, sed is the only class
being installed. However, it could be one of any number of classes.

• Create a sed class action script.

C-22

You cannot deliver a copy of /sbin/inittab that looks the way you
need for it to, since /sbin/inittab is a dynamic file and you have no
way of knowing how it will look at the time of package installation.
Using a sed script allows us to modify the /sbin/inittab file during
package installation.

As already mentioned, the name of a sed script should be the same as the
name of the file it will edit. A sed script contains sed commands to
remove and add information to the file. See Figure C-19 for an example
sed script.

System Services and Application Packaging Tools

Case #5a

• Create a postinstall script.

You need to inform the system that /sbin/inittab has been modified
by executing ini t q. The only place you can perform that action in this
example is in a postinstall script. Looking at the example postinstall
script, shown in Figure C-20, you will see that its only purpose is to exe­
cute init q.

This approach to editing /sbin/inittab during installation has two draw­
backs. First of all, you have to deliver a full script (the postinstall script) simply
to perform init q. In addition to that, the package name at the end of each
comment line is hardcoded. It would be nice if this value could be based on the
package instance so that you could distinguish between the entries you add for
each package.

Sample Files

Figure C-17: Case #5a pkginfo File

Package Installation Case Studies C-23

Case #5a

Figure C-18: Case #5a prototype File

Figure C-19: Case #5a sed Script (/sbinjinittab)

C-24 System Services and Application Packaging Tools

Case #5a

Figure C-20: Case #5a Postinstall Script

Package Installation Case Studies C-25

Case #5b

This study modifies a file which exists on the installation during package instal­
lation. It uses one of three modification methods. The other two methods are
shown in Cases Sa and Sc. The file modified is /sbin/inittab.

Techniques

This case study shows examples of the following techniques:

• creating classes

• using installation and removal class action scripts

Approach

To modify /sbin/inittab during installation, you must:

• Create a class.

Create a class called inittab. You must provide an installation and a
removal class action script for this class. Define the inittabl class in
the CLASSES parameter in the pkginfo file (as shown in Figure C-21).

• Create an inittab file.

This file contains the information for the entry that you will add to
/sbin/inittab. Notice in the prototype file (Figure C-22) that init­
tab is a member of the inittab class and has a file type of e for edit­
able. Figure C-2S shows what inittab looks like.

• Create an installation class action script.

C-26

Since class action scripts must be multiply executable (meaning you get
the same results each time they are executed), you can't just add our text
to the end of the file. The script, shown in Figure C-23, performs the fol­
lowing procedures:

o checks to see if this entry has been added before

o if it has, removes any previous versions of the entry

System Services and Application Packaging Tools

Case #5b

o edits the inittab file file and adds the comment lines so you know
where the entry is from

o moves the temporary file back into / sbin/ ini t tab

o executes init q when it receives the end-of-class indicator

Note that init q can be performed by this installation script. A one-line
postinstall script is not needed by this approach.

• Create a removal class action script.

The removal script, shown in Figure C-24, is very similar to the installa­
tion script. The information added by the installation script is removed
and init q is executed.

This case study resolves the drawbacks to Case Sa. You can suppprt multiple
package instances since the comment at the end of the inittab entry is now
based on package instance. Also, you no longer need a one-line postinstall
script. However, this case has a drawback of its own. You must deliver two
class action scripts and the ini t tab file to add one line to a file. Case 5c
shows a more streamlined approach to editing /sbin/inittab during installa­
tion.

Sample Files

Figure C-21: Case #5b pkginfo File

Package Installation· Case Studies C-27

Case #5b

Figure C-22: Case #5b prototype File

Figure C-23: Case #5b Installation Class Action Script (i.lnittab)

C-28 System Services and Application Packaging Tools

Case #5b

Figure C-24: case #5b Removal Class Action Script (r.lnlttab)

Figure C-25: case #5b inittab File

Package Installation Case Studies C-29

Case #5c

This study modifies a file which exists on the installation machine during pack­
age installation. It uses one of three modification methods. The other two
methods are shown in Cases Sa and Sb. The file modified is /sbin/inittab.

Techniques

This case study shows examples of the following technique:

• using the build class

Approach

This approach to modifying /sbin/inittab uses the build class. A build
class file is executed as a shell script and its output becomes the new version of
the file being executed. In other words, the data file inittab that is delivered
with this package will be executed and the output of that execution will become
/ sbin/ init tab.

The build class file is executed during package installation and package remo­
val. The argument install is passed to the file if it is being executed at instal­
lation time. Notice in the sample build file in Figure C-28 that installation
actions are defined by testing for this argument.

To edit /sbin/inittab using the build class, you must:

• Define the build file in the prototype file.

The entry for the build file in the prototype file should place it in the
build class and define its file type as e. Be certain that the CLASSES
parameter in the pkginfo file is defined as build. Figure C-26 shows
the pkginfo file for this example and Figure C-27 shows the prototype
file.

• Create the build file.

C-30

The build file shown in Figure C-28 performs the following procedures:

o Edits /sbin/inittab to remove any changes already existing for
this package. Notice that the filename /sbin/inittab is hard­
coded into the sed command.

System Services and Application Packaging Tools

Case #5c

o If the package is being installed, adds the new line to the end of
/sbin/inittab. A comment tag is included in this new entry to
remind us from where that entry came.

o Executes ini t q.

This solution addresses the drawbacks in case studies Sa and Sb. Only one file
is needed (beyond the pkginfo and prototype files), that file is short and
simple, it works with multiple instances of a package since the $PKGINST
parameter is used, and no postinstall script is required since init q can be exe­
cuted from the build file.

Figure C-26: Case #5c pkginfo File

Figure C-27: Case #5c prototype File

Package Installation Case Studies C-31

Case #5c

Figure C-28: Case #5c build Script (/sbin/init)

C-32 System Services and Application Packaging Tools

Case #6

This case study modifies a number crontab files during package installation.

Techniques

This case study shows examples of the following techniques:

• using classes and class action scripts

• using the crontab command within a class action script

Approach

You could use the build class and follow the approach shown for editing
/sbin/inittab in case study 5c except that you want to edit more than one
file. If you used the build class approach, you would need to deliver one for
each cron file edited. Defining a cron class provides a more general approach.
To edit a crontab file with this approach, you must:

• Define the cron files that will be edited in the prototype file.

Create an entry in the prototype file for each crontab file which will
be edited. Define their class as cron and their file type as e. Use the
actual name of the file to be edited, as shown in Figure C-30.

• Create the crontab files that will be delivered with the package.

These files contain the information you want added to the existing cron­
tab files of the same name. See Figures C-33 and C-34 for examples of
what these files look like.

• Create an installation class action script for the cron class.

The i. cron script (Figure C-31) performs the following procedures:

o Calculates the user id.

This is done by setting the variable user to the base name of the
cron class file being processed. That name equates to the user id.
For example, the basename of /var/spool/cron/crontabs/root
is root (which is also the user id).

Package Installation Case Studies C-33

Case #6

o Executes erontab using the user id and the -1 option.

Using the -1 options tells erontab to send the standard output the
contents of the erontab for the defined user.

o Pipes the output of the erontab command to a sed script that
removes any previous entries that have been added using this instal­
lation technique.

o Puts the edited output into a temporary file.

o Adds the data file for the root user id (that was delivered with the
package) to the temporary file and adds a tag so that you will know
from where these entries came.

o Executes erontab with the same user id and give it the temporary
file as input.

• Create a removal class action script for the eron class.

The removal script, shown in Figure C-32, is the same as the installation
script except that there is no procedure to add information to the eron­
tab file.

These procedures are performed for every file in the eron class.

Sample Files

Figure C-29: Case #3 pkginfo File

C-34 System Services and Application Packaging Tools

Case #6

Figure C-30: Case #6 prototype File

Figure C-31: Case #6 Installation Class Action Script (I.cron)

Package Installation Case Studi,s C-35

Case #6

Figure C-32: Case #6 Removal Class Action Script (r.cron)

Figure C-33: Case #6 Root crontab File (delivered with package)

C-36 System Services and Application Packaging Tools

Case #6

Figure C-34: Case #6 Sys crontab File (delivered with package)

Package Installation Case Studies C-37

Index

A
add-books A: 2

address space of a process 7: 1, 15
addscr A: 11

advisory locking 3: 2

application programming 2: 1-29
applications software installation (see

package)
archive commands 6: 11-12
awk(1) 1: 5-6

B
bc(1) 1:7

brk(2) 7: 16

c
C language 1: 4-8

calculator programs 1: 7
chmod(1) 3: 17

class, scheduler (see scheduler class)
class action script 8: 19, 25-31

classes
assigning objects to 8: 42, 50
installation of 8: 26
removal of 8: 28

system 8: 29

the awk class 8: 30

the build class 8: 31

the sed class 8: 29
communication, interprocess (IPC)

4: 1-87

compiler construction (see yacc(1»
compver(4) 8: 15

copy, symbolic links 6: 8-9

Index

copyright messages, write 8: 44
copyright(4) 8: 16

curses(3X) 1: 8

D
data validation tools

characteristics 10: 3
error messages 10: 5

formatting 10:5

help messages 10: 4
list of shell commands 10: 6-7
list of visual tools 10: 9

prompts 10: 3

purpose 10: 1

types 10: 2

when to use 10: 1
dc(1) 1: 7

deadlock (file and record locking)
3: 16, 18

default title
description 9: 14

example 9: 14
format 9: 14

delsysa~lM) 9: 1-3
depend(4) 8: 16-17

desk calculator programs 1: 7

/dev, zero 7: 8

E
edsysadm(1M) 9: 1-2

error handling 2: 2-3

ETI 1: 9-10

exec(2) 2: 8-10

1·1

Index

F
fcntl(2) 3: 6, 8, 13-15

field item help message
description 9: 14
example 9: 15

format 9: 15
file and record locking 2: 19-20,

3: 1-19

~le mode (see permissions, file)
files

lock 2: 19-20

locking (see locking)
memory-mapped (see mapped

files)
ownership 6: 3,12

FMLI 1: 8-9
fork(2) 2: 8-10

fsync(2) 7: 3

H
hard link 6: 1, 7

help messages
setting up in a FACE object 9: 17
title hierarchy 9: 16

writing 9: 12

~nit(1M), scheduler properties 5: 29
mode 6: 1

installation
parameters 8: 21-22
tools 8: 9

installation scripts (package) 8: 19-33

class action script 8: 25-31

exit codes 8: 22

parameters 8:21
procedure script 8: 32-33
processing 8: 20

request script 8: 23-25
installf(lM) 8: 32

interface modifications
naming 9:9
naming requirements 9: 10

planning 9: 6

planning the location of 9: 6

planning the structure 9: 8

writing 9: 11
IPC (interprocess communication)

2: 20-22, 4: 1-87

item help file 9: 12

K
kernel preemption point 5: 33

L
languages 1: 4-8 (see also C

language)
latencies, software 5: 33-34
lex(l) 1: 6
liber A: 1

link count 6, 1

links, create 8: 47
lockf(3C) 3: 6,8-9,11,14-16

locking 3: 1, 5
advisory 3: 2, 18

file and record 3: 1-19

mandatory 3: 3,17-18

permissions 3: 4

read 3: 2, 4, 9

1-2 System Services and Application Packaging Tools

___ Index

record 3: 6, 9

write 3: 2, 4, 9
ls(1) 3: 17

lseek(2) 3: 8

m4(1) 1: 7

mail(1) 3: 4
mandatory locking 3: 3, 17
mapped files 7: 4-9

private 7: 5
shared 7: 5

memcntl(2) 7: 10-11
memory, shared (see shared

memory)
memory management 2: 25-26,

7: 1-16
address spaces 7: 1

address-space layout 7: 15
coherence 7: 2

concepts 7: 1

heterogeneity 7: 2

mapping 7: 1
memcntl(2) 7: 10-11
mincore(2) 7: 10
mlock(3C) 7: 11

mlockall(3C) 7: 12
mmap(2) 7: 4-9
nlprotect(2) 7: 13-14
msync(3c) 7: 12-13
munlock(3C) 7: 11
munlockall(3C) 7: 12
munmap(2) 7: 9

networking 7: 2

pagesize 7: 13
system calls 7: 4

Index

virtual memory 7: 1
memory-mapped files (see mapped

files)
menus (sysadm)

changing entries 9: 23
creating entries 9: 22
definition form 9: 25
deleting entries 9: 33

information file 9: 4

item help message description
9: 13

item help message example 9: 13
item help message format 9: 13
locating entries 9: 9
testing changes 9: 25

message (iPC) 4: 3-31
blocking 4: 3
control (mSgctl) 4: 14-15
get (msgget) 4: 8-11
identifier (msqid) 4: 4-7
msgctl ~xample program 4: 15-20
msgget example program 4: 11-14
msgop example program 4: 23-31
operations (msgop) 4: 21-23
permission codes 4: 9-10
queue data structure 4: 4-7
receive 4: 22-23
send 4: 21-22
usage 4: 4-7

mincore(2) 7: 10
mlock(3C) 7: 11·

mlockall(3c) 7: 12
mnap(2) 7: 4-9
nprotect(2) 7: 13-14
msgct1(2) 4: 14-20

example program 4: 15-20
usage 4: 14-15

msgget(2) 4: 8-14

1-3

Index

example program 4: 11-14
usage 4: 8-11

msgop(2) 4: 21-31
example program 4:23-31
usage 4: 21-23

msgrcv(2) 4: 22-23
msgsnd(2) 4: 21-22
msync(3C) 7: 12-1'3
munlock(3C) 7: 11
munlockall(3C) 7: 12
murunap(2) 7: 9

N
nice(1) 5: 28
nice(2) 5: 28

o
OPEN LOOK 1: 11-12

p
package

access in scripts 8: 38

administration 9: 11
assign abbreviation 8: 36
basic steps to 8: 34-36
contents 8: 2-4

copyright message 8: 44
create 8: 54, 56

create datastream formats 8: 56
define dependencies 8: 43

description file 9: 4

distribute over multiple volumes
8:53

identifier 8: 37
information files 8: 10-18
installation 8: 9

installation scripts 8: 19-33
instance 8: 37
life cycle 8: 5
location 8: 40
modification file 9: 3

objects 8: 3
quick reference 8: 58-60
relocatable objects 8: 40-41
space requirements 8: 45
tools 8: 6-8

parsing 1: 7
path

physical 6: 4

virtual 6: 4

pathname
mapping installation 8: 48
rename with pkgproto 8: 49

pcinfo data structure 5: 15
pcparms data structure 5: 19
performance, scheduler effect on

5:30-34
permissions

file 6: 3, 8, 12
IPC messages 4: 9-10
semaphores 4: 39-40
shared memory 4: 68-69

pkgadd(1M) 8: 26
pkginfo(l) 8: 22
pkginfo(4) 8: 10-11, 22

creating 8: 46
pkgmap(4) 8: 18
pkgmk(1) 8: 6-7, 54-55

locating package contents 8: 54
pkgparan(l) 8:22
pkgparan(4) 8: 22

1-4 System Services and Application Packaging Tools

pkgproto(l) 8: 6, 8, 49-53

assign objects to classes 8: 50

create links 8: 52

rename pathnames 8: 51
pkgrrn(lM) 8: 28

pkgtrans(1) 8: 6-7, 56-57

preemption latency 5: 33-34

preemption point, kernel 5: 33
preprocessor, m4 1: 7
priocntl(l) 5: 9-13
priocntl(2) 5: 13-25

priocntl set (2) 5: 25-27

priority (see process priority)
procedure scripts 8: 19, 32-33

post install 8: 32

postremove 8: 32

preinstall 8:32

pre remove 8: 32
proces~spa\Vning 2:5-10

process address space 7: 1, 15
process priority 5: 3-4, 6-8

global 5: 4
real-time 5: 6
setting and retrieving 5: 9-27

system 5: 7
time-sharing 5: 7

process scheduler (see scheduler)
process state transition 5: 31
procset data structure 5: 25

programming, application 2: 1-29
prototype(4) 8: 11-15, 47-52, 9: 4

command lines 8: 14,49

creating manually 8: 47-49
creating \Vith pkgproto 8: 49-54

description lines 8: 12

Index

R
read lock 3: 2, 4, 9, 13

real-time
scheduler class 5: 5
scheduler parameter table 5: 5

records, locking (see locking)
regular link 6: 1
removef(1M) 8: 32

s
sbrk (see brk(2»
scheduler 2: 22-23, 5: 1

effect on performance 5: 30-34

real-time policy 5: 5
system policy 5: 5
time-sharing policy 5: 4

scheduler class 5: 3-5

real-time 5: 5
system 5: 5
time-sharing 5: 4

scheduler data structures
pcinfo 5: 15
pcparms 5: 19

procset 5: 25
scripts (package)

class action 8: 19, 25-31
procedure 8: 19, 32-33

processing 8: 20
request 8: 19, 23-25

semaphore 4: 32-62
control (semetl) 4: 44-46

get (semget) 4: 37-40

identifier (semid) 4: 34-37

operations (semop) 4: 56-57

permission codes 4: 39-40

Index

semc:tl example program 4: 46-56

1-5

Index

seuget example program 4: 41-44
semp example program 4: 57-62
set data structure 4: 34-37
usage 4: 34-37

semctl(2) 4: 44-56
example program 4: 46-56
summary 4: 36
usage 4: 44-46

s~et(2) 4:37-44
example program 4:41-44
usage 4: 37-40

semp(2) 4:56-62

example program 4:57-62
usage 4: 56-57

setprocset macro 5: 26
shared memory 4:63-87

control (shmctl) 4: 74-75
data structure 4: 64-67
get (shmget) 4: 67-70
identifier (shmid) 4: 64-67
operations (shmop) 4: 81-83
permissions 4: 68-69
shmctl example program 4: 75-81
shmget example program 4: 70-73
shmop example program 4: 83-87
usage 4: 64-67

stunat(2) 4:81-83
shmctl(2) 4: 74-81

example program 4: 75-81
usage 4: 74-75

s~t(2) 4:81-83
shmget(2) 4: 67-73

example program 4:70-73
usage 4: 67-70

shmop(2) 4:81-87

example program 4:83-87
usage 4: 81-83

signals 2: 12-17

code blocking 2: 16
handlers 2: 14-16
sending 2: 16
stacks 2: 17
types 2: 13-14

software applications packaging (see
package)

software latencies 5: 33-34
space(4) 8: 17-18
state transitions, process 5: 31
symbolic links 2: 23-24, 6: 1

access 6:8
and pre-SVR4.0 systems 6: 11
content of 6: 1

copy 6: 8-9
create 6: 3, 6-7
definition of 6: 1

examples of creating 6: 7-8
link 6:9-10
looping with 6: 6
move 6: 10
properties of 6: 3-5
referenced file 6: 3
remove 6: 3, 8
uses of 6: 1-2
with RFS 6: 12-14

symlink(2) 6: 6

synchronization 7: 3
sysadm(lM)

interface hierarchy 9: 6

interface modification 9: 1

system calls 2: 2-18
advanced 10 2: 4

basic 10 2: 3

error handling 2: 2-3
IPe 4: 1-87
list file system control 2: 12
list IPC 2: 10

1-6 System Services and Application Packaging Tools

list memory management 2: 11

list miscellaneous 2: 18

signals 2: 12-17
terminal 10 2: 5

user processes 2: 5-10

system scheduler class 5: 5

T
task

action file 9: 11

change entry 9: 28

create entry 9: 27
definition form 9: 30

delete entry 9: 33

time slice, real-time process 5: 20

time-sharing
scheduler class 5: 4
scheduler parameter table 5: 5

u
u-block, real-time process 5: 34

UNIX System, files 6: 1
user priority 5: 7

v
VFS, architecture 6: 2
virtual memory 7: 1-3 (see also

memory management>
VM (virtual memory) (see memory

management>

Index

Index

w
widget 1: 11
write lock 3: 2, 4, 9

x
XWIN 1: 11

y
yacc(1) 1: 7

z
zero(7) 7: 8

1-7

