W

ATsT

UNIXe SYSTEM V
RELEASE 4
Programmer's Guide:

System Services and
Application Packaging Tools

UNIX Software Operation

Copyright 1990, 1989, 1988, 1987, 1986, 1985, 1984, 1983 AT&T
All Rights Reserved
Printed in USA

Published by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

No part of this publication may be reproduced or transmitted in any form or by any means—graphic,
electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap-
ing, by any computer or information storage and retrieval systems, etc., without prior permissions in
writing from AT&T.

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all information in this document, AT&T
assumes no liability to any party for any loss or damage caused by errors or omissions or by state-
ments of any kind in this document, its updates, supplements, or special editions, whether such er-
rors are omissions or statements resulting from negligence, accident, or any other cause. AT&T furth-
er assumes no liability arising out of the application or use of any product or system described
herein; nor any liability for incidental or consequential damages arising from the use of this docu-
ment. AT&T disclaims all warranties regarding the information contained herein, whether expressed,
implied or statutory, including implied warranties of merchantability or fitness for a particular purpose.
AT&T makes no representation that the interconnection of products in the manner described herein
will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the
granting or license to make, use or sell equipment constructed in accordance with this description.

AT&T reserves the right to make changes without further notice to any products herein to improve
reliability, function, or design.

TRADEMARKS

OPEN LOOK is a trademark of AT&T.
X Window System is a trademark of the Massachusetts Institute of Technology.

10987654321

ISBN 0-13-9470L0-3

UNIX
ESS
A Prentice Hall Title

P RENTI CE H A L L

ORDERING INFORMATION

UNIX® SYSTEM V, RELEASE 4 DOCUMENTATION

To order single copies of UNIX® SYSTEM V, Release 4 documentation,
please call (201) 767-5937.

ATTENTION DOCUMENTATION MANAGERS AND TRAINING DIRECTORS:
For bulk purchases in excess of 30 copies please write to:

Corporate Sales

Prentice Hall

Englewood Cliffs, N.J. 07632.

Or call: (201) 592-2498.

ATTENTION GOVERNMENT CUSTOMERS: For GSA and other pricing
information please call (201) 767-5994.

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

AT&T UNIX® System V Release 4

General Use and System Administration

UNIX® System V Release 4 Network User’s and Administrator’s Guide
UNIX® System V Release 4 Product Overview and Master Index
UNIXS System V Release 4 System Administrator’s Guide

UNIX System V Release 4 System Administrator’s Reference Manual
UNIX® System V Release 4 User’s Guide

UNIX® System V Release 4 User’s Reference Manual

General Programmer’s Series

UNIX® System V Release 4 Programmer’s Guide: ANSI C
and Programming Support Tools

UNIX® System V Release 4 Programmer’s Guide: Character User Interface
(FMLI and ETI)

UNIX® System V Release 4 Programmer’s Guide: Networking Interfaces
UNIX® System V Release 4 Programmer’s Guide: POSIX Conformance

UNIX® System V Release 4 Programmer’s Guide: System Services
and Application Packaging Tools

UNIX® System V Release 4 Programmer’s Reference Manual

System Programmer’s Series

UNIX® System V Release 4 ANSI C Transition Guide
UNIX® System V Release 4 BSD / XENIX® Compatibility Guide

UNIX® System V Release 4 Device Driver Interface / Driver—Kernel
Interface (DDI / DKI) Reference Manual

UNIX® System V Release 4 Migration Guide
UNIX® System V Release 4 Programmer’s Guide: STREAMS

Available from Prentice Hall

Contents

Preface
Purpose i
1 Introduction to Application Programming
Introduction 1-1
Application Programming 1-2
UNIX System Tools and Where You Can Read About
Them 1-3
Languages Supported in a UNIX System Environment and
Where You Can Read About Them 1-4
2 Application Programming in the UNIX
System Environment
Introduction 21
System Calls 2-2
Developing Application Software 2-19
Package Development and Installation 2-27
3 File and Record Locking
Intreduction 3-1
Terminology 32
File Protection 4 3-4
Selecting Advisory or Mandatory Locking 3-17

Table of Contents

Table of Contents

4 Interprocess Communication
Introduction 4-1
Messages 4-3
Semaphores 4-32
Shared Memory 4-63

5 Process Scheduler

Introduction 5-1
Overview of the Process Scheduler 5-3
Commands and Function Calls 5-6
Interaction with Other Functions 5-28
Performance 5-30

6 Symbolic Links

Introduction 6-1

Using Symbolic Links 6-3
7 Memory Management

Overview of the Virtual Memory System 7-1

Memory Management Interfaces 7-4

Address Space Layout 7-15

8 Packaging Application Software

An Overview of Software Packaging 8-1
Contents of a Package 8-2
The Structural Life Cycle of a Package 8-5
The Packaging Tools 8-6

i System Services and Application Packaging Tools

Table of Contents

The Installation Tools 8-9

The Package Information Files 8-10
The Installation Scripts 8-19
Basic Steps of Packaging 8-34
Assigning a Package Abbreviation 8-36
Defining a Package Instance 8-37
Writing Your Installation Scripts 8-39
Making Package Objects Relocatable 8-40
Placing Obijects into Classes 8-42
Defining Package Dependencies 8-43
Writing a Copyright Message 8-44
Reserving Additional Space on the Installation Machine 8-45
Creating the pkginfo File 8-46
Creating the prototype File 8-47
Distributing Packages over Multiple Volumes 8-53
Creating a Package with pkgmk 8-54
Creating a Package with pkgtrans 8-56
Quick Reference to Packaging Procedures 8-58

9 Modifying the sysadm Interface

Overview of sysadm Modification 9-1
Planning Your Interface Modifications 9-6
Writing Your Administration Actions 9-11
Writing Your Help Messages 9-12
Packaging Your Interface Modifications 9-21
Deleting Interface Modifications 9-33

1 0 Data Validation Tools

Introduction to the Tools 10-1
Types of Tools 10-2
Characteristics of the Tools 10-3

Table of Contents iii

Table of Contents

A liber, A Library System

liber, A Library System A-1
B Manual Pages

Manual Pages B-1
C Package Installation Case Studies

Introduction C-1

Case #1 Cc-2

Case #2 C-7

Case #3 C-13

Case #4 C-19

Case #5a Cc-22

Case #5b C-26

Case #5¢ C-30

Case #6 C-33
| Index

Index I-1

iv System Services and Application Packaging Tools

Figures and Tables

Figure 1-1:
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 2-8:
Figure 2-9:

A Simple ETI Program

Basic File /O System Calls

Advanced File I/O System Calls

Terminal /O System Calls

Process System Calls

Process Status

Example of fork

Advanced Interprocess Communication System Calls
Memory Management System Calls

File System Control System Calls

Figure 2-10: Signal System Calls
Figure 2-11: Miscellaneous System Calls

Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:

ipc_perm Data Structure
Operation Permissions Codes
msgget System Call Example
msgctl System Call Example
msgop System Call Example
Operation Permissions Codes
semget System Call Example
semctl System Call Example
semop System Call Example

Figure 4-10: Operation Permissions Codes

Figure 4-11:
Figure 4-12:
Figure 4-13:

Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 8-1:
Figure 8-2:
Figure 8-3:

shmget System Call Example
shmct1 System Call Example
shmop System Call Example
The System V Release 4 Process Scheduler
Process Priorities (Programmer View)
What Gets Returned by PC_GETPARMS
Process State Transition Diagram
File Tree with Symbolic Link
Symbolic Links with RFS: Example 1
Symbolic Links with RFS: Example 2
The Contents of a Package
Sample pkginfo File
Sample #1 prototype File

Table of Contents

1-10
2-3
2-4
2-5
2-5
2-7
2-9
2-11
2-11
2-12
2-12
2-18
4-6

4-12
4-18
4-27
4-39
4-42
4-51
4-60
4-68
4-72
4-78
4-85
5-3

5-6

5-21
5-31
6-5

6-13
6-14
8-2

8-11
8-13

Table of Contents

Figure 8-4:
Figure 8-5:
Figure 8-6:
Figure 8-7:
Figure 8-8:
Figure 8-9:
Figure 8-10:
Figure 8-11:
Figure 9-1:
Figure 9-2:
Figure 10-1:
Figure 10-2:
Figure C-1:
Figure C-2:
Figure C-3:
Figure C-4:
Figure C-5:
Figure C-6:
Figure C-7:
Figure C-8:
Figure C-9:

Figure C-10:
Figure C-11:
Figure C-12:
Figure C-13:
Figure C-14:
Figure C-15:
Figure C-16:
Figure C-17:
Figure C-18:
Figure C-19:
Figure C-20:
Figure C-21:
Figure C-22:
Figure C-23:
- Figure C-24:
Figure C-25:
Figure C-26:
Figure C-27:
Figure C-28:

vi

Sample #2 prototype File
Sample compver File
Sample copyright File
Sample depend File
Sample space File

Placing Parameters into the Installation Environment

sed Script Format
awk Script Format
ltem Help File for One Form
ltem Help File for Multiple Forms
The Shell Commands
The Visual Tools
Case #1 pkginfo File
Case #1 prototype File
Case Study #1 Request Script
Case #2 prototype File
Case #2 pkginfo File
Case #2 Request Script
Case #2 Postinstall Script
Case #3 pkginfo File
Case #3 prototype File
Case #3 space File
Case #3 Installation Class Action Script (i.admin)
Case #3 Removal Class Action Script (r.cfgdata)
Case #4 pkginfo File
Case #4 copyright File
Case #4 compver File
Case #4 depend File
Case #5a pkginfo File
Case #5a prototype File
Case #5a sed Script (/sbin/inittab)
Case #5a Postinstall Script
Case #5b pkginfo File
Case #5b prototype File
Case #5b Installation Class Action Script (i.inittab)
Case #5b Removal Class Action Script (r.inittab)
Case #5b inittab File
Case #5c¢ pkginfo File
Case #5¢ prototype File
Case #5¢ build Script (/sbin/init)

8-15
8-15
8-16
8-17
8-18
8-24
8-30
8-31

9-18
9-19
10-6
10-9
C-4

C-4

C-5

C-9

C-10
C-11
C-12
C-15
C-15
C-16
C-17
C-18
C-20
C-20
Cc-21
C-21
C-23
C-24
C-24
C-25
Cc-27
C-28
C-28
C-29
C-29
C-31
C-31
C-32

System Services and Application Packaging Tools

Figure C-29:
Figure C-30:
Figure C-31:
Figure C-32:
Figure C-33:
Figure C-34:

Case #3 pkginfo File

Case #6 prototype File

Case #6 Installation Class Action Script (i.cron)
Case #6 Removal Class Action Script (r.cron)

Case #6 Root crontab File (delivered with package)
Case #6 Sys crontab File (delivered with package)

Table of Contents

Table of Contents

C-34
C-35
C-35
C-36
C-36
C-37

vil

PREFACE

N

JOVi3Hd

Preface

Purpose

Audience and Prerequisite Knowledge
Organization

The C Connection

Hardware/Software Dependencies
Notation Conventions

Command References

Information in the Examples

Table of Contents

Purpose

This guide is designed to give you information about application programming
in a UNIX system environment. It does not attempt to teach you how to write
programs. Rather, it is intended to supplement texts on programming by con-
centrating on the other elements that are part of getting application programs
into operation.

Audience and Prerequisite Knowledge

As the title suggests, we are addressing application programmers. No special
level of programming involvement is assumed. We hope the book will be use-
ful to people who work on or manage large application development projects.

Programmers in the expert class, or those engaged in developing system
software, may find this guide lacks the depth of information they need. For
them we recommend the Programmer’s Reference Manual.

Knowledge of terminal use, of a UNIX system editor, and of the UNIX system
directory/file structure is assumed. If you feel shaky about your mastery of
these basic tools, you might want to look over the User’s Guide before tackling
this one. “

Organization

This material is organized into ten chapters as follows:
m Chapter 1 — Introduction to Application Programming

Briefly describes what application programming is, UNIX system tools
and where to read about them, and languages supported in the UNIX sys-
tem environment and where to read about them.

m Chapter 2 — Application Programming in the UNIX System Environment

This chapter introduces the system calls and other system services you can
use to develop and package application programs.

m Chapters 3 through 10 — Support Tools and Descriptions

Includes detailed information about the use of many of the UNIX system
tools and system services. ‘

Preface i

Purpose

At the end of the text is an appendix showing a sample application that pulls
together a lot of the tools described in the Guide; an appendix of manual pages
unique to System Services and Application Packaging Tools; an appendix of case
studies; and an index.

The C Connection

The UNIX system supports many programming languages, and C compilers are
available on many different operating systems. Nevertheless, the relationship
between the UNIX operating system and C has always been and remains very
close. Most of the code in the UNIX operating system is written in the C
language, and over the years many organizations using the UNIX system have
come to use C for an increasing portion of their application code. Thus, while
this guide is intended to be useful to you no matter what language(s) you are
using, you will find that, unless there is a specific language-dependent point to
be made, the examples assume you are programming in C. The Programmer’s
Guide: ANSI C and Programming Support Tools gives you detailed information on
C language programming in the UNIX environment.

Hardware/Software Dependencies

Nearly all the text in this book is accurate for any computer running UNIX Sys-
tem V Release 4.0, with the exception of hardware-specific information such as
addresses.

If you find commands that work a little differently in your UNIX system
environment, it may be because you are running under a different release of the
software. If some commands just don’t seem to exist at all, they may be
members of packages not installed on your system. If you do find yourself try-
ing to execute a non-existent command, talk to the administrators of your sys-
tem to find out what you have available.

ii System Services and Application Packaging Tools

Purpose

Notation Conventions

Whenever the text includes examples of output from the computer and/or com-
mands entered by you, we follow the standard notation scheme that is common
throughout UNIX system documentation:

m All computer input and output is shown in a constant-width font.
Commands that you type in from your terminal are shown in constant-
width type. Text that is printed on your terminal by the computer is
shown in constant-width type.

® Comments added to a display to show that part of the display has been
omitted are shown in italic type and are indented to separate them from
the text that represents computer output or input. Comments that explain
the input or output are shown in the same type font as the rest of the
display.

An italic font is used to show substitutable text elements, such as the
word "filename."

m Because you are expected to press the RETURN key after entering a com-
mand or menu choice, the RETURN key is not explicitly shown in these
cases. If, however, during an interactive session, you are expected to press
RETURN without having typed any text, the notation is shown.

m Control characters are shown by the string "CTRL-" followed by the
appropriate character, such as D (this is known as CTRL-D). To enter a
control character, hold down the key marked "CTRL" (or "CONTROL")
and press the "D" key.

m The standard default prompt signs for an ordinary user and root are the
dollar sign ($) and the pound sign (#).

® When the # prompt is used in an example, the command illustrated may
be executed only by root.

Preface iii

Purpose

Command References

When commands are mentioned in a section of the text for the first time, a
reference to the manual section where the command is formally described is
included in parentheses: command(section). The numbered sections are located
in the following manuals:

Sections (1, 1C, 1G) User’s Reference Manual
Sections (1, 1IM), (4), (5), (7), 8) System Administrator’s Reference Manual
Sections (1), (2), (3), (4), (5) Programmer’s Reference Manual

Note that Section 1 is listed for all the manuals. Section 1 of the User’s Reference
Manual describes commands appropriate for general users. Section 1 of the
Programmer’s Reference Manual describes commands appropriate for program-
mers. Section 1 of the System Administrator’s Reference Manual describes com-
mands appropriate for system administrators.

Information in the Examples

While every effort has been made to present displays of information just as they
appear on your terminal, it is possible that your system may produce slightly
different output. Some displays depend on a particular machine configuration
that may differ from yours. Changes between releases of the UNIX system
software may cause small differences in what appears on your terminal.

Where complete code samples are shown, we have tried to make sure they com-
pile and work as represented. Where code fragments are shown, while we can’t
say that they have been compiled, we have attempted to maintain the same
standards of coding accuracy for them.

iv System Services and Application Packaging Tools

INTRODUCTION TO APPLICATION PROGRAMMING

1 Introduction to Application
Programming

Introduction

1-1

Application Programming 12
UNIX System Tools and Where You Can

Read About Them 1-3
Tools Covered and Not Covered in This Guide 1-3
Languages Supported in a UNIX System
Environment and Where You Can Read

About Them 1-4
The C Language 1-4
Shell 15
awk 1-5
lex 1-6
yacc 1-7
m4 1-7
bc and dc 1-7
curses 1-8
FMLI 1-8
ETI 19

XWIN Graphical Windowing System
OPEN LOOK Graphical User Interface

Table of Contents

1-11
1-11

Introduction

This chapter introduces application programming in a UNIX system environ-
ment.

It briefly describes what application programming is and then moves on to a
discussion on UNIX system tools and where you can read about them, and to
languages supported in the UNIX system environment and where you can read
about them.

Throughout this chapter and the rest of the Guide, you will find pointers and
references to other guides and manuals where information is described in detail.
In particular, you will find numerous references to the Programmer’s Guide: ANSI
C and Programming Support Tools. The Programmer’s Guide: ANSI C and Program-
ming Support Tools and the Programmer’s Guide: System Services and Application
Packaging Tools are closely connected. Much of the information from both used
to be in the Release 3.2 version of the Programmer’s Guide. For Release 4.0 of
UNIX, the information has been divided into two guides.

This guide concentrates on an application programmer’s view of how to
develop and package application software under UNIX System V, using the sys-
tem services provided by the kernel.

The Programmer’s Guide: ANSI C and Programming Support Tools describes the C
programming environment, libraries, compiler, link editor, and file formats. It
also describes the tools provided in the UNIX System/C environment for build-
ing, analyzing, debugging, and maintaining programs.

If you are unsure of which book to reference, check the Product Overview and
Master Index. It explains how the document set is organized and where to find
specific information.

Introduction to Application Programming 141

Application Programming

This Guide discusses programming where the objective is to produce programs
(applications) that will run on a UNIX system computer.

Programmers working in this environment are developing applications for the
benefit of other, nonprogramming users. Most large commercial computer
applications involve a team of applications development programmers. They
may be employees of the end-user organization or they may work for a
software development firm. Some of the people working in this environment
may be more in the project management area than working programmers.

Application programming has some of the following characteristics:

m Applications are often large and are developed by a team of people who
write requirements, designs, tests, and end-user documents. This implies
use of a project management methodology, including version control
(described in the Programmer’s Guide: ANSI C and Programming Support
Tools), change requests, tracking, and so on.

m Applications must be developed more robustly.

- They must be easy to use, implying character or graphical user
interfaces.

- They must check all incoming data for validity (for example,
using the data validation tools described in Chapter 10).

— They should be able to handle large amounts of data.
m Applications must be easy to install and administer (see Chapter 8, “Pack-

aging Application Software” and Chapter 9, “Modifying the sysadm Inter-
face”).

1-2 System Services and Application Packaging Tools

UNIX System Tools and Where You Can Read
About Them

Let’s clarify the term “UNIX system tools.” In the narrowest sense, it means an
existing piece of software used as a component in a new task. In a broader con-
text, the term is often used to refer to elements of the UNIX system that might
also be called features, utilities, programs, filters, commands, languages, func-
tions, and so on. It gets confusing because any of the things that might be
called by one or more of these names can be, and often are, used in the narrow
way as part of the solution to a programming problem.

Tools Covered and Not Covered in This Guide

The Programmer’s Guide: System Services and Application Packaging Tools is about
tools used in the process of creating programs in a UNIX system environment,
so let’s take a minute to talk about which tools we mean, which ones are not
going to be covered in this book, and where you might find information about
those not covered here. Actually, the subject of things not covered in this guide
might be even more important to you than the things that are. We couldn’t
possibly cover everything you ever need to know about UNIX system tools in
this one volume.

Tools not covered in this text:

m the login procedure

m UNIX system editors and how to use them

® how the file system is organized and how you move around in it

m shell programming
Information about these subjects can be found in the User’s Guide and a number
of commercially available texts.

Tools that are covered in this text apply to applications. Each application per-
forms a different function, but goes through the same basic steps: input, process-
ing, and output. These tools help you accomplish these steps.

Tools for packaging applications software and customizing the user interface are
also covered in this text. :

Introduction to Application Programming 1-3

Languages Supported in a UNIX System
Environment and Where You Can Read About
Them

In this section we describe a variety of languages supported in the UNIX system
environment.

By “languages” we mean those offered by AT&T for use on a computer running
a current release of UNIX System V. Since these are separately purchasable
items, not all of them will necessarily be installed on your machine. On the
other hand, you may have languages available on your machine that came from
another source and are not mentioned in this discussion.

The C Language

C is intimately associated with the UNIX system since it was originally
developed for use in recoding the UNIX system kernel. If you need to use a lot
of UNIX system function calls for low-level I/O, memory or device manage-
ment, or interprocess communication, C is a logical first choice. Most programs,
however, don’t require such direct interfaces with the operating system, so the
decision to choose C might better be based on one or more of the following
characteristics:

m a variety of data types: characters, integers of various sizes, and floating
point numbers

m low-level constructs (most of the UNIX system kernel is written in C)

derived data types such as arrays, functions, pointers, structures, and
unions

multidimensional arrays
scaled pointers and the ability to do pointer arithmetic
bitwise operators

" a variety of flow-of-control statements: if, if-else, switch, while,
do—while, and for

® a high degree of portability

1-4 System Services and Application Packaging Tools

UNIX System Languages

A difficulty with C is that it takes a fairly concentrated use of the language over
a period of several months to reach your full potential as a C programmer. If
you are a casual programmer, you might make life easier for yourself if you
choose a less demanding language.

Refer to the Programmer’s Guide: ANSI C and Programming Support Tools for com-
plete details on C.

Shell

You can use the shell to create programs (new commands). Such programs are
also called shell procedures. Refer to the User’s Guide for information on how
to create and execute shell programs using commands, variables, positional
parameters, return codes, and basic programming control structures.

awk

awk (its name is an acronym constructed from the initials of its developers)
scans an input file for lines that match pattern(s) described in a specification file.
On finding a line that matches a pattern, awk performs actions also described in
the specification. It is not uncommon that an awk program can be written in a
couple of lines to do functions that would take a couple of pages to describe in
a programming language like FORTRAN or C. For example, consider a case
where you have a set of records that consist of a key field and a second field
that represents a quantity, and the task is to output the sum of the quantities for
each key. The pseudocode for such a program might look like this:

Introduction to Application Programming 1-5

UNIX System Languages

An awk program to accomplish this task would look like this:

{ aty[$1] += $2 }
END { for (key in qty) print key, qtylkeyl] 1}

This illustrates only one characteristic of awk; its ability to work with associative
arrays. With awk, the input file does not have to be sorted, which is a require-
ment of the pseudoprogram.

For detailed information on awk, see the “awk” chapter in the User’s Guide and
awk(1) in the User’s Reference Manual.

lex

lex is a lexical analyzer that can be added to C or FORTRAN programs. A lex-
ical analyzer is interested in the vocabulary of a language rather than its gram-
mar, which is a system of rules defining the structure of a language. lex can
produce C language subroutines that recognize regular expressions specified by
the user, take some action when a regular expression is recognized, and pass the
output stream on to the next program.

For detailed information on lex, see the “lex” chapter in the Programmer’s
Guide: ANSI C and Programming Support Tools and 1ex(1) in the Programmer’s
Reference Manual.

1-6 System Services and Application Packaging Tools

UNIX System Languages

yacc

yacc (Yet Another Compiler Compiler) is a tool for describing an input
language to a computer program. yacc produces a C language subroutine that
parses an input stream according to rules laid down in a specification file. The
yacc specification file establishes a set of grammatical rules together with
actions to be taken when tokens in the input match the rules. lex may be used
with yacc to control the input process and pass tokens to the parser that
applies the grammatical rules.

For detailed information on yacc, see the yacc chapter in the Programmer’s
Guide: ANSI C and Programming Support Tools and yacc(1) in the Programmer’s
Reference Manual.

m4

m4 is a macro processor that can be used as a preprocessor for assembly
language and C programs. For details, see the m4 chapter of the Programmer’s
Guide: ANSI C and Programming Support Tools and m4(1) in the Programmer’s
Reference Manual.

bc and dc

bc enables you to use a computer terminal as you would a programmable cal-
culator. You can edit a file of mathematical computations and call be to execute
them. The bc program uses dc. You can use dc directly, if you want, but it
takes a little getting used to since it works with reverse Polish notation. That
means you enter numbers into a stack followed by the operator. bc and dc are
described in Section 1 of the User’s Reference Manual.

Introduction to Application Programming 1-7

UNIX System Languages

curses

Actually a library of C functions, curses is included in this list because the set
of functions just about amounts to a sublanguage for dealing with terminal
screens. If you are writing programs that include interactive user screens, you
will want to become familiar with this group of functions.

For detailed information on curses, see the Programmer’s Guide: Character User
Interfce (FMLI and ETI)

FMLI

The Form and Menu Language Interpreter (FMLI) is a high-level programming
tool having two main parts:

® The Form and Menu Language, a programming language for writing
scripts that define how an application will be presented to users. The syn-
tax of the Form and Menu Language is very similar to that of the UNIX
system shell programming language, including variable setting and
evaluation, built-in commands and functions, use of and escape from spe-
cial characters, redirection of input and output, conditional statements,
interrupt signal handling, and the ability to set various terminal attributes.
The Form and Menu Language also includes sets of “descriptors,” which
are used to define or customize attributes of frames and other objects in
your application.

® The Form and Menu Language Interpreter, fmli, which is a command
interpreter that sets up and controls the video display screen on a termi-
nal, using instructions from your scripts to supplement FMLI’s predefined
screen control mechanisms. FMLI scripts can also invoke UNIX system
commands and C executables, either in the background or in full screen
mode. The Form and Menu Language Interpreter operates similarly to
the UNIX command interpreter sh. At run time it parses the scripts you
have written, thus giving you the advantages of quick prototyping and
easy maintenance.

FMLI provides a framework for developers to write applications and application
interfaces that use menus and forms. It controls many aspects of screen
management for you. That means that you do not have to be concerned with
the low-level details of creating or placing frames, providing users with a means

1-8 System Services and Application Packaging Tools

UNIX System Languages

of navigating between or within frames, or processing the use of forms and
menus. Nor do you need to worry about on which kind of terminal your appli-
cation will be run. FMLI takes care of all that for you.

For details see the FMLI chapter in the Programmer’s Guide: Character User Inter-
face (FMLI and ETI)

ETI

The Extended Terminal Interface (ETI) is a set of C library routines that promote
the development of application programs displaying and manipulating win-
dows, panels, menus, and forms and that run under the UNIX system.

ETI consists of

the low-level (curses) library
m the panel library

m the menu library

m the form library

m the TAM Transition library

The routines are C functions and macros; many of them resemble routines in the
standard C library. For example, there’s a routine printw that behaves much
like print £ and another routine getch that behaves like getc. The automatic
teller program at your bank might use printw to print its menus and getch to
accept your requests for withdrawals (or, better yet, deposits). A visual screen
editor like the UNIX system screen editor vi might also use these and other ETI
routines.

A maijor feature of ETI is cursor optimization. Cursor optimization minimizes
the amount a cursor has to move around a screen to update it. For example, if
you designed a screen editor program with ETI routines and edited the sentence

"ETI is a great package for creating forms and menus.
to read
ETI is the best package for creating forms and menus.

the program would change only ““the best” in place of “a great.” The
other characters would be preserved. Because the amount of data

Introduction to Application Programming 1-9

UNIX System Languages

transmitted—the output—is minimized, cursor optimization is also referred to
as output optimization.

Cursor optimization takes care of updating the screen in a manner appropriate
for the terminal on which an ETI program is run. This means that ETI can do
whatever is required to update many different terminal types. It searches the

terminfo database to find the correct description for a terminal.

How does cursor optimization help you and those who use your programs?
First, it saves you time in describing in a program how you want to update
screens. Second, it saves a user’s time when the screen is updated. Third, it
reduces the load on your UNIX system’s communication lines when the updat-
ing takes place. Fourth, you don’t have to worry about the myriad of terminals
on which your program might be run.

Here’s a simple ETI program. It uses some of the basic ETI routines to move a
cursor to the middle of a terminal screen and print the character string
BullsEye. For now, just look at their names and you will get an idea of what
each of them does:

Figure 1-1: A Simple ETI Program

For complete information on ETI, refer to the ETI chapter in the Programmer’s
Guide: Character User Interface (FMLI and ETI).

1-10 System Services and Application Packaging Tools

UNIX System Languages

XWIN Graphical Windowing System

The XWIN Graphical Windowing System is a network-transparent window sys-
tem. X display servers run on computers with either monochrome or color bit-
map display hardware. The server distributes user input to and accepts output
requests from various application programs (referred to as “clients”). Each
client is located on either the same machine or on another machine in the net-
work.

The clients use X1ib, a C library routine, to interface with the window system
by means of a stream connection.

“Widgets” are a set of code and data that provide the look and feel of a user
interface. The C library routines used for creating and managing widgets are
called the X Intrinsics. They are built on top of the X Window System, monitor
events related to user interactions, and dispatch the correct widget code to han-
dle the display. Widgets can then call application-registered routines (called
callbacks) to handle the specific application semantics of an interaction. The X
Intrinsics also monitor application-registered, nongraphical events and dispatch
application routines to handle them. These features allow programmers to use
this implementation of an OPEN LOOK toolkit in data base management, net-
work management, process control, and other applications requiring response to
external events.

Clients sometimes use a higher level library of the X Intrinsics and a set of
widgets in addition to x1ib. Refer to the XWIN Graphical Windowing System for
general information about the design of X. The Xlib—C Language Interface is a
reference guide to the low-level C language interface to the XWIN System pro-
tocol.

OPEN LOOK Graphical User Interface

The OPEN LOOK Graphical User Interface is a software application that creates
a user-friendly graphical environment for the UNIX system. It replaces the trad-
itional UNIX system commands with with graphics that include windows,
menus, icons, and other symbols. Using a hand-held pointing device (a
“mouse”), you manipulate windows by moving them, changing their size and
running them in the background. You can have multiple applications running at
the same time by creating more than one window on your screen.

Introduction to Application Programming 1-11

UNIX System Languages

For more information, refer to the OPEN LOOK Graphical User Interface User’s
Guide and the OPEN LOOK Graphical User Interface Programmer’s Guide/Reference
Manual.

1-12 ‘ System Services and Application Packaging Tools

AP IN THE UNIX SYSTEM ENVIRONMENT

NINNOHIANT WILSAS XINN 3HL NI dV

2 Application Programming in the
UNIX System Environment

Introduction 2-1
System Calls 22
Error Handling 2-2
Basic File 110 2-3
Advanced File 1/0 2-4
Terminal 1/0 2-5
Processes 25
m Overview of Processes 2-6
m exec(2) 2-8
m fork(2) 2-8
Basic Interprocess Communication 2-10
Advanced Interprocess Communication ‘ 2-10
Memory Management 2-11
File System Control 2-12
Signals 2-12
-m Signals Overview 2-13
Miscellaneous System Calls 2-18
Developing Application Software 2-19
File and Record Locking 2-19
m Where to Find More Information 2-20
Interprocess Communications 2-20
m Where to Find More Information 2-22
Process Scheduler . : 2-22
m Where to Find More Information 2-23
Symbolic Links 2-23
m Where to Find More Information 2-24

Table of Contents i

Table of Contents

Memory Management 2-25
m The Memory Mapping Interface 2-25
m Where to Find More Information 2-26
Data Validation Tools 2-26
m Where to Find More Information 2-26
Package Development and Installation 2-27
Packaging Application Software 2-27
m Where to Find More Information 2-28
Modifying the sysadm Interface 2-28
m Where to Find More Information 2-29

System Services and Application Packaging Tools

Introduction

This chapter discusses programming where the objective is to produce programs
(applications) that will run on a UNIX system computer.

The chapter introduces the system calls and other system services you can use
to develop and package application programs.

The first section lists the system calls in functional groups, and includes brief
discussions of error handling, processes, and signals. For details, see Section 2
of the Programmer’s Reference Manual.

The ““Developing Application Software” section introduces such topics as file
and record locking, interprocess communication, symbolic links, virtual
memory, the process scheduler, and data validation.

The “Package Development and Installation” section introduces how to package
applications software and customize the user interface.

The chapter’s aim is to give you some sense of the situations in which you use
these tools, and how the tools fit together.

Application Programming in the UNIX System Environment 2-1

System Calls

UNIX system calls are the interface between the kernel and the user programs
that run on top of it. read, write, and the other system calls in Section 2 of the
Programmer’s Reference Manual define what the UNIX system is. Everything else
is built on their foundation. Strictly speaking, they are the only way to access
such facilities as the file system, interprocess communication primitives, and
multitasking mechanisms.

Of course, most programs do not need to invoke system calls directly to gain
access to these facilities. If you are writing a C program, for example, you can
use the library functions described in Section 3 of the Programmer’s Reference
Manual. When you use these functions, the details of their implementation on
the UNIX system are transparent to the program, for example, that the system
call read underlies the fread implementation in the standard C library. In
other words, the program will generally be portable to any system, UNIX or
not, with a conforming C implementation. (See Chapter 2 of the Programmer’s
Guide: ANSI C and Programming Support Tools for a discussion of the standard C
library.)

In contrast, programs that invoke system calls directly are portable only to other
UNIX or UNIX-like systems; for that reason, you would not use read in a pro-
gram that performed a simple input/output operation. Other operations, how-
ever, including most multitasking mechanisms, do require direct interaction
with the UNIX system kernel. These operations are the subject of the first part
of this book.

A C program is automatically linked with the system calls you have invoked
when you compile the program. The procedure may be different for programs
written in other languages. Check the Programmer’s Guide: ANSI C and Program-
ming Support Tools for details on the language you are using.

Error Handling

UNIX system calls that are not able to complete successfully almost always
return a value of -1 to your program. (If you look through the system calls in
Section 2, you will see that there are a few calls for which no return value is
defined, but they are the exceptions.) In addition to the —1 that is returned to
the program, the unsuccessful system call places an integer in an externally

2-2 System Services and Application Packaging Tools

System Calls

declared variable, errno. In a C program, you can determine the value in
errno if your program contains the statement

#include <errno.h>
The value in errno is not cleared on successful calls, so your program should

check it only if the system call returned a —1. The errors are described in
intro(2) of the Programmer’s Reference Manual.

The C language function perror(3C) can be used to print an error message (on
stderr) based on the value of errno.

Basic File I/0

These system calls perform basic operations on UNIX system files.

Figure 2-1: Basic File I/0 System Calls

Function Name(s) Purpose

open open a file for reading or writing

close close a file descriptor

read read from a file

write write to a file

creat create a new file or rewrite an existing
one

unlink remove directory entry

lseek move read/write file pointer

Application Programming in the UNIX System Environment 2-3

System Calls

Advanced File 1/0

These system calls allow creation of new directories (and other things), linking
to existing files, and obtaining or modifying file status information.

Figure 2-2: Advanced File I/O System Calls

Function Name(s) Purpose

link link to a file

access determine accessibility of a file

mknod make a directory, a special, or ordinary
file

chmod, fchmod change mode of file

chown, lchown, fchown | change owner and group of a file

utime set file access and modification times

stat, lstat, fstat get file status

fentl file control

ioctl device control

fpathconf, pathconf get configurable path name variables

getdents read directory entries and put in file
system-independent format

mkdir make a directory

readlink read the value of a symbolic link

rename change the name of a file

rmdir remove a directory

symlink make a symbolic link to a file

2-4 System Services and Application Packaging Tools

System Calls

Terminal I/O

These system calls deal with a general terminal interface that is provided to con-
trol asynchronous communications ports.

Figure 2-3: Terminal /O System Calls

Function Name(s) Purpose
tcgetattr, tcsetattr get and set terminal attributes
tcsendbreak, tcdrain, line control functions
tcflush, tcflow
cfgetospeed, cfgetispeed, get and set baud rate functions
cfsetispeed, cfsetospeed
tcgetpgrp, tcsetpgrp get and set terminal foreground pro-
cess group ID
tcgetsid get terminal session ID
Processes

These system calls control user processes.

Figure 2-4: Process System Calls

Function Name(s) Purpose
fork create a new process
exec, execl, execv, execle, execute a file
execve, execlp, execvp
exit, _exit terminate process
wait wait for child process to stop or ter-
minate
setuid, setgid set user and group IDs
setpgrp set process group ID

Application Programming in the UNIX System Environment 2-5

System Calls

Figure 2-4: Process System Calls (continued)

chdir, fchdir change working directory

chroot change root directory

nice change priority of a process

getcontext, setcontext get and set current user context

getgroups, setgroups get or set supplementary group access
list IDs

getpid, getpgrp, getppid, get process, process group, and parent

getpgid process IDs

getuid, geteuid, getgid, get real user, effective user, real group,

getegid and effect

pause suspend process until signal

priocntl process scheduler control

setpgid set process group ID

setsid set session ID

waitid wait for a child process to change state

kill send a signal to a process or group of
processes

Overview of Processes

Whenever you execute a command in the UNIX system you are initiating a pro-
cess that is numbered and tracked by the operating system. A flexible feature of
the UNIX system is that processes can be generated by other processes. This
happens more than you might ever be aware of. For example, when you log in
to your system you are running a process, very probably the shell. If you then
use an editor such as vi, take the option of invoking the shell from vi, and exe-
cute the ps command, you will see a display something like that in Figure 2-5
(which shows the results of a ps —f command):

2-6 System Services and Application Packaging Tools

System Calls

Figure 2-5: Process Status

As you can see, user abc (who went through the steps described above) now
has four processes active. It is an interesting exercise to trace the chain that is
shown in the Process ID (PID) and Parent Process ID (PPID) columns. The shell
that was started when user abc logged on is process 24210; its parent is the ini-
tialization process (process ID 1). Process 24210 is the parent of process 24631,
and so on.

The four processes in the example above are all UNIX system shell-level com-
mands, but you can spawn new processes from your own program. You might
think, “Well, it’s one thing to switch from one program to another when I'm at
my terminal working interactively with the computer; but why would a pro-
gram want to run other programs, and if one does, why wouldn’t I just put
everything together into one big executable module?”

Overlooking the case where your program is itself an interactive application
with diverse choices for the user, your program may need to run one or more
other programs based on conditions it encounters in its own processing. (If it’s
the end of the month, go do a trial balance, for example.) The usual reasons
why it might not be practical to create one large executable are:

m The load module may get too big to fit in the maximum process size for
your system. .

® You may not have control over the object code of all the other modules
you want to include.

Suffice it to say, there are legitimate reasons why this creation of new processes
might need to be done. There are two ways to do it:

Application Programming in the UNIX System Environment 2-7

System Calis

m exec(2)—stop this process and start another
m fork(2)—start an additional copy of this process

exec(2)

exec is the name of a family of functions that includes execl, execv, execle,
execve, execlp, and execvp. They all have the function of transforming the
calling process into a new process. The reason for the variety is to provide dif-
ferent ways of pulling together and presenting the arguments of the function.
An example of one version (execl) might be:

execl ("/usr/bin/prog2", "prog", progargl, progarg2, (char *)0);
For execl the argument list is

/usr/bin/prog2 path name of the new process file

prog the name the new process gets in its drgv [0]

progargl, arguments to prog2 as char *’s
progarg2

(char *)0 anull char pointer to mark the end of the arguments

Check the exec(2) manual page in the Programmer’s Reference Manual for the
rest of the details. The key point of the exec family is that there is no return
from a successful execution: the new process overlays the process that makes
the exec system call. The new process also takes over the Process ID and other
attributes of the old process. If the call to exec is unsuccessful, control is
returned to your program with a return value of —1. You can check errno to
learn why it failed.

fork(2)

The fork system call creates a new process that is an exact copy of the calling
process. The new process is known as the child process; the caller is known as
the parent process. The one major difference between the two processes is that
the child gets its own unique process ID. When the fork process has com-
pleted successfully, it returns a 0 to the child process and the child’s process ID
to the parent. If the idea of having two identical processes seems a little funny,
consider this:

2-8 System Services and Application Packaging Tools

System Calls

m Because the return value is different between the child process and the
parent, the program can contain the logic to determine different paths.

m The child process could say, ““Okay, I'm the child. I'm supposed to issue
an exec for an entirely different program.”

m The parent process could say, “My child is going to be execing a new
process. I'll issue a wait until I get word that that process is finished.”

Your code might include statements like this:

Figure 2-6: Example of fork

’

Application Programming in the UNIX System Environment 2-9

System Calls

Because the child process ID is taken over by the new exec’d process, the
parent knows the ID. What this boils down to is a way of leaving one program
to run another, returning to the point in the first program where processing left
off. By the way, this is exactly what the function system in the standard C
library does.

Keep in mind that the fragment of code above includes a minimum amount of
checking for error conditions. There is also potential confusion about open files
and which program is writing to a file. Leaving out the possibility of named
files, the new process created by the fork or exec has the three standard files
that are automatically opened: stdin, stdout, and stderr. If the parent has
buffered output that should appear before output from the child, the buffers
must be flushed before the fork. Also, if the parent and the child process both
read input from a stream, whatever is read by one process will be lost to the
other. That is, once something has been delivered from the input buffer to a
process the pointer has moved on.

Basic Interprocess Communication

These system calls connect processes so they can communicate. pipe is the sys-
tem call for creating an interprocess channel. dup is the call for duplicating an
open file descriptor. (These IPC mechanisms are not applicable for processes on
separate hosts.)

Advanced Interprocess Communication

These system calls support interprocess messages, semaphores, and shared
memory and are effective in data base management. (These IPC mechanisms
are also not applicable for processes on separate hosts.)

2-10 System Services and Application Packaging Tools

System Calls

Figure 2-7: Advanced Interprocess Communication System Calls

Function Name(s) Purpose

msgget get message queue

msgctl message control operations

msgop message operations

semget get set of semaphores

semctl semaphore control operations

semop semaphore operations

shmget get shared memory segment identifier
shmctl shared memory control operations
shmop shared memory operations

Memory Management

These system calls give you access to virtual memory facilities.

Figure 2-8: Memory Management System Calls

Function Name(s) Purpose
getpagesize get system page size

memcntl memory management control

mmap map pages of memory

mprotect set protection of memory mapping
munmap unmap pages of memory

plock lock process, text, or data in memory
brk, sbrk change data segment space allocation

Application Programming in the UNIX System Environment 2-11

System Calls

File System Control

These system calls allow you to control various aspects of the file system.

Figure 2-9: File System Control System Calis

Function Name(s) Purpose
ustat get file system statistics
sync update super block
mount , unmount mount/unmount a file system
statfs, fstatfs | get file system information
sysfs get file system type information
Signals

Signals are messages passed by the UNIX system to running processes.

Figure 2-10: Signal System Calls

Function Name(s) Purpose

sigaction detailed signal management

sigaltstack set and/or get signal alternate stack
context

signal, sigset, sighold, simplified signal management

sigrelse, sigignore, sigpause

sigpending examine signals that are blocked and
pending

sigprocmask change or examine signal mask

sigsend, sigsendset send a signal to a process or group of
processes

sigsuspend install a signal mask and suspend pro-

~ cess until signal

212 System Services and Application Packaging Tools

System Calls

Signals Overview

The system defines a set of signals that may be delivered to a process. Signal
delivery resembles the occurrence of a hardware interrupt: the signal is nor-
mally blocked from further occurrence, the current process context is saved, and
a new one is built. A process may specify the handler to which a signal is
delivered, or specify that the signal is to be blocked or ignored. A process may
also specify that a default action is to be taken when signals occur.

Some signals will cause a process to exit when they are not caught. This may
be accompanied by creation of a core image file, containing the current
memory image of the process for use in post-mortem debugging. A process
may choose to have signals delivered on a special stack, so that sophisticated
software stack manipulations are possible.

All signals have the same priority. If multiple signals are pending simultane-
ously, the order in which they are delivered to a process is implementation
specific. Signal routines normally execute with the signal that caused their invo-
cation to be blocked, but other signals may yet occur. Mechanisms are provided
whereby critical sections of code may protect themselves against the occurrence
of specified signals.

Signal Types

The signals defined by the system fall into one of five classes: hardware condi-
tions, software conditions, input/output notification, process control, or resource
control. The set of signals is defined in the file <signal.h>.

Hardware signals are derived from exceptional conditions which may occur
during execution. Such signals include SIGFPE representing floating point and
other arithmetic exceptions, SIGILL for illegal instruction execution, SIGSEGV
for addresses outside the currently assigned area of memory or for accesses that
violate memory protection constraints and SIGBUS for accesses that result in
hardware related errors. Other, more CPU-specific hardware signals exist, such
as SIGABRT, SIGEMT, and SIGTRAP.

Software signals reflect interrupts generated by user request: SIGINT for the
normal interrupt signal; SIGQUIT for the more powerful quit signal, that nor-
mally causes a core image to be generated; SIGHUP and SIGTERM that cause
graceful process termination, either because a user has hung up, or by user or
program request; and SIGKILL, a more powerful termination signal which a
process cannot catch or ignore. Programs may define their own asynchronous

Application Programming in the UNIX System Environment 2-13

System Calls

events using SIGUSR1 and SIGUSR2. Other software signals (SIGALRM,
SIGVTALRM, SIGPROF) indicate the expiration of interval timers.

A process can request notification via a SIGPOLL signal when input or output is
possible on a descriptor, or when a non-blocking operation completes. A pro-
cess may request to receive a SIGURG signal when an urgent condition arises.

A process may be stopped by a signal sent to it or the members of its process
group. The SIGSTOP signal is a powerful stop signal, because it cannot be
caught. Other stop signals SIGTSTP, SIGTTIN, and SIGTTOU are used when a
user request, input request, or output request respectively is the reason for stop-
ping the process. A SIGCONT signal is sent to a process when it is continued
from a stopped state. Processes may receive notification with a SIGCHLD signal
when a child process changes state, either by stopping or by terminating.

Exceeding resource limits may cause signals to be generated. SIGXCPU occurs
when a process nears its CPU time limit and SIGXFSZ warns that the limit on
file size creation has been reached.

Signal Handlers

A process has a handler associated with each signal. The handler controls the
way the signal is delivered. The call

#include <signal.h>

struct sigaction {

void (*sa_handler) () ;
sigset_t sa_mask;
int sa_flags;

}:

sigaction(signo, sa, osa)
int signo;
struct sigaction *sa;
struct sigaction *osa;

2-14 System Services and Application Packaging Tools

System Calls

assigns interrupt handler address sa_handler to signal signo. Each handler
address specifies either an interrupt routine for the signal, that the signal is to
be ignored, or that a default action (usually process termination) is to occur if
the signal occurs. The constants SIG_IGN and SIG_DFL used as values for
sa_handler cause ignoring or defaulting of a condition.

There are two things that must be done to reset a signal handler from within
a signal handler. Resetting the routine that catches the signal [signal (n,
SIG_DFL) ;] is only the first. lt's also necessary to unblock the blocked sig-
] nal, which is done with sigprocmask.

sa_mask specifies the set of signals to be masked when the handler is invoked;
it implicitly includes the signal which invoked the handler. Five operations are
permitted on signal sets. The set will be emptied by a call to sigemptyset. It
will be filled with every signal currently supported by a call to sigfillset.
Specific signals may be added or deleted with calls to sigaddset and sigdel-
set respectively. Set membership can be tested with sigismember. Signals
sets should always be initialized with a call to sigemptyset or sigfillset.

sa_flags specifies special properties of the signal, such as whether system
calls should be restarted if the signal handler returns, if the signal action should
be reset to SIG_DFL when it is caught, and whether the handler should operate
on the normal run-time stack or a special signal stack (see below).

If osa is nonzero, the previous signal action is returned.

When a signal condition arises for a process, the signal is added to a set of sig-
nals pending for the process. If the signal is not currently blocked by the pro-
cess then it will be delivered. The process of signal delivery adds the signal to
be delivered and those signals specified in the associated signal handler’s
sa_mask to a set of those masked for the process, saves the current process
context, and places the process in the context of the signal handling routine.
The call is arranged so that if the signal handling routine exits normally the sig-
nal mask will be restored and the process will resume execution in the original
context. If the process wishes to resume in a different context, then it must
arrange to restore the signal mask itself.

The mask of blocked signals is independent of handlers for delays. It delays the
delivery of signals much as a raised hardware interrupt priority level delays
hardware interrupts. Preventing an interrupt from occurring by changing the
handler is analogous to disabling a device from further interrupts.

Application Programming in the UNIX System Environment 2-15

System Calls

The signal handling routine sa_handler is called by a C call of the form

(*sa_handler) (signo, infop, ucp):
int signo;
siginfo_t *infop;
ucontext_t *ucp;

signo gives the number of the signal that occurred. infop is either equal to 0, or
points to a structure that contains information detailing the reason why the sig-
nal was generated. This information must be explicitly asked for when the
signal’s action is specified. The ucp parameter is a pointer to a structure con-
taining the process’s context prior to the delivery of the signal, and will be used
to restore the process’s context upon return from the signal handler.

Sending Signals

A process can send a signal to another process or group of processes with the
calls:

kill (pid, signo);
int pid, signo;
sigsend (idtype, id, signo);
idtype_t idtype;
id_t id;
Unless the process sending the signal is privileged, its real or effective user ID
must be equal to the receiving process’s real or saved user ID.

Signals can also be sent from from a terminal device to the process group or ses-
sion leader associated with the terminal. See termio(7).

Protecting Critical Sections

To block a section of code against one or more signals, a sigprocmask call
may be used to add a set of signals to the existing mask, and return the old
mask:

sigprocmask (SIG_BLOCK, mask, omask);
sigset_t *mask;
sigset_t *omask;

2-16 System Services and Application Packaging Tools

System Calls

The old mask can then be restored later with sigprocmask,

sigprocmask (SIG_UNBLOCK, mask, omask);
sigset_t *mask;
sigset_t *omask;

The sigprocmask call can be used to read the current mask without changing
it by specifying null pointer as its second argument.

It is possible to check conditions with some signals blocked, and then to pause
waiting for a signal and restoring the mask, by using:

sigsuspend (mask) ;
sigset_t *mask;

Signal Stacks
Applications that maintain complex or fixed size stacks can use the call

struct sigaltstack ({
caddr_t ss_sp;
int ss_size;
int ss_flags;

}i

sigaltstack(ss, oss)
struct sigaltstack *ss;
struct sigaltstack *oss;

to provide the system with a stack based at ss_sp of size ss_size for delivery
of signals. The system automatically adjusts for direction of stack growth.
ss_flags indicates whether the process is currently on the signal stack, and
whether the signal stack is disabled.

When a signal is to be delivered and the process has requested that it be
delivered on the alternate stack (see sigaction above), the system checks
whether the process is on a signal stack. If it is not, then the process is switched
to the signal stack for delivery, with the return from the signal arranged to
restore the previous stack.

If the process wishes to take a nonlocal exit from the signal routine, or run code
from the signal stack that uses a different stack, a sigaltstack call should be
used to reset the signal stack.

Application Programming in the UNIX System Environment 217

System Calls

Miscellaneous System Calls

These are system calls for such things as administration, timing, and other mis-
cellaneous purposes.

Figure 2-11: Miscellaneous System Calls

Function Names(s) Purpose

ulimit get and set user limits

alarm set a process alarm clock

getmsg get next message off a stream

getrlimit, setrlimit | control maximum system resource con-
sumption

uname get/set name of current UNIX system

putmsg send a message on a stream

profil execution time profile

sysconf method for application’s determination
of value for system configuration

uadmin administrative control

time get time

stime set time

acct enable or disable process accounting

sys3b machine-specific functions

2-18

System Services and Application Packaging Tools

Developing Application Software

Each application performs a different function, but goes through the same basic
steps: input, processing, and output. This section briefly describes tools you can
use to accomplish these steps. Then it refers you to other chapters in this book
or to other documents for more details.

For the input and output steps, most applications interact with an end user at a
terminal.

During the processing step, sometimes an application needs access to special
services provided by the operating system (for example, to interact with the file
system, control processes, manage memory, and more). Some of these services
are provided through system calls and some through libraries of functions.
(System calls are grouped by function in the previous section of this book.)
Some system call services and libraries for validating data are described in detail
later in this book.

File and Record Locking

The provision for locking files, or portions of files, is primarily used to prevent
the sort of error that can occur when two or more users of a file try to update
information at the same time. The classic example is the airlines reservation
system where two ticket agents each assign a passenger to Seat A, Row 5 on the
5 o’clock flight to Detroit. A locking mechanism is designed to prevent such
mishaps by blocking Agent B from even seeing the seat assignment file until
Agent A’s transaction is complete.

File locking and record locking are really the same thing, except that file locking
implies the whole file is affected; record locking means that only a specified por-
tion of the file is locked. (Remember, in the UNIX system, file structure is
undefined; a record is a concept of the programs that use the file.)

Two types of locks are available: read locks and write locks. If a process places
a read lock on a file, other processes can also read the file but all are prevented
from writing to it, that is, changing any of the data. If a process places a write
lock on a file, no other processes can read or write in the file until the lock is
removed. Write locks are also known as exclusive locks. The term shared lock
is sometimes applied to read locks.

Application Programming in the UNIX System Environment 2-19

Developing Application Software

Another distinction needs to be made between mandatory and advisory locking.
Mandatory locking means that the discipline is enforced automatically for the
system calls that read, write, or create files. This is done through a permission
flag established by the file’s owner (or the superuser). Advisory locking means
that the processes that use the file take the responsibility for setting and remov-
ing locks as needed. Thus, mandatory may sound like a simpler and better
deal, but it isn’t so. The mandatory locking capability is included in the system
to comply with an agreement with /usr/group, an organization that
represents the interests of UNIX system users. The principal weakness in the
mandatory method is that the lock is in place only while the single system call
is being made. It is extremely common for a single transaction to require a
series of reads and writes before it can be considered complete. In cases like
this, the term atomic is used to describe a transaction that must be viewed as an
indivisible unit. The preferred way to manage locking in such a circumstance is
to make certain the lock is in place before any I/O starts, and that it is not
removed until the transaction is done. That calls for locking of the advisory
variety.

Where to Find More Information

There is an example of file and record locking in the sample application in
Appendix A. Chapter 3 in this book is a detailed discussion of the subject with
a number of examples. The manual pages that apply to this facility are
fcnt1(2), fent 1(5), lock£(3), and chmod(2) in the Programmer’s Reference
Manual. fcntl1(2) is the system call for file and record locking (although it isn’t
limited to that only) £cnt1(5) tells you the file control options. The subroutine
lock£(3) can also be used to lock sections of a file or an entire file. Setting
chmod so that all portions of a file are locked will ensure that parts of files are
not corrupted.

Interprocess Communications

Pipes, named pipes, and signals are all forms of interprocess communication.
Business applications running on a UNIX system computer, however, often need
more sophisticated methods of communication. In applications, for example,
where fast response is critical, a number of processes may be brought up at the
start of a business day to be constantly available to handle transactions on
demand. This cuts out initialization time that can add seconds to the time
required to deal with the transaction. To go back to the ticket reservation

2-20 System Services and Application Packaging Tools

Developing Application Software

example again for a moment, if a customer calls to reserve a seat on the 5
o’clock flight to Detroit, you don’t want to have to say, ““Yes, sir. Just hang on a
minute while I start up the reservations program.” In transaction-driven sys-
tems, the normal mode of processing is to have all the components of the appli-
cation standing by waiting for some sort of an indication that there is work to
do.

To meet requirements of this type, the UNIX system offers a set of nine system
calls and their accompanying header files, all under the umbrella name of inter-
process communications (IPC).

The IPC system calls come in sets of three; one set each for messages, sema-
phores, and shared memory. These three terms define three different styles of
communication between processes:

messages Communication is in the form of data stored in a buffer.
The buffer can be either sent or received.

semaphores Communication is in the form of positive integers with a
value between 0 and 32,767. Semaphores may be con-
tained in an array the size of which is determined by the
system administrator. The default maximum size for
the array is 25.

shared memory Communication takes place through a common area of
main memory. One or more processes can attach a seg-
ment of memory and as a consequence can share what-
ever data is placed there.

The sets of IPC system calls are:

msgget semget shmget
msgctl semctl shmctl
msgop semop shmop

The get calls each return to the calling program an identifier for the type of
IPC facility that is being requested.

The ct1 calls provide a variety of control operations that include obtaining
(IPC_STAT), setting (IPC_SET) and removing (IPC_RMID), the values in data
structures associated with the identifiers picked up by the get calls.

Application Programming in the UNIX System Environment 2-21

Developing Application Software

The op manual pages describe calls that are used to perform the particular
operations characteristic of the type of IPC facility being used. msgop has calls
that send or receive messages. semop (the only one of the three that is actually
the name of a system call) is used to increment or decrement the value of a
semaphore, among other functions. shmop has calls that attach or detach
shared memory segments.

Where to Find More Information

Chapter 4 in this book gives a detailed description of IPC, with many code
examples that use the IPC system calls. An example of the use of some IPC
features is included in the liber application in Appendix A. The system calls
are described in Section 2 of the Programmer’s Reference Manual.

Process Scheduler

The UNIX system scheduler determines when processes run. It maintains pro-
cess priorities based on configuration parameters, process behavior, and user
requests; it uses these priorities to assign processes to the CPU.

Scheduler functions give users absolute control over the order in which certain
processes run and the amount of time each process may use the CPU before
another process gets a chance.

By default, the scheduler uses a time-sharing policy. A time-sharing policy
adjusts process priorities dynamically in an attempt to give good response time
to interactive processes and good throughput to CPU-intensive processes.

The scheduler offers a real-time scheduling policy as well as a time-sharing pol-
icy. Real-time scheduling allows users to set fixed priorities— priorities that the
system does not change. The highest priority real-time user process always gets
the CPU as soon as it is runnable, even if system processes are runnable. An
application can therefore specify the exact order in which processes run. An
application may also be written so that its real-time processes have a guaranteed
response time from the system.

For most UNIX system environments, the default scheduler configuration works
well and no real-time processes are needed: administrators need not change
configuration parameters and users need not change scheduler properties of
their processes. However, for some applications with strict timing constraints,

2-22 System Services and Application Packaging Tools

Developing Application Software

real-time processes are the only way to guarantee that the application’s require-
ments are met.

Where to Find More Information

Chapter 5 in this book gives detailed information on the process scheduler,
along with relevant code examples. See also priocnt1(1) in the User’s Refer-
ence Manual, priocnt1(2) in the Programmer’s Reference Manual, and
dispadmin(1M) in the System Administrator’s Reference Manual.

Symbolic Links

A symbolic link is a special type of file that represents another file. The data in
a symbolic link consists of the path name of a file or directory to which the
symbolic link file refers. The link that is formed is called symbolic to distin-
guish it from a regular (also called a hard) link. A symbolic link differs function-
ally from a regular link in three major ways.

m Files from different file systems may be linked.

m Directories, as well as regular files, may be symbolically linked by any
user.

m A symbolic link can be created even if the file it represents does not exist.

When a user creates a regular link to a file, a new directory entry is created con-
taining a new file name and the inode number of an existing file. The link
count of the file is incremented.

In contrast, when a user creates a symbolic link, (using the 1n(1) command with
the —s option) both a new directory entry and a new inode are created. A data
block is allocated to contain the path name of the file to which the symbolic link
refers. The link count of the referenced file is not incremented.

Symbolic links can be used to solve a variety of common problems. For exam-
ple, it frequently happens that a disk partition (such as root) runs out of disk
space. With symbolic links, an administrator can create a link from a directory
on that file system to a directory on another file system. Such a link provides

extra disk space and is, in most cases, transparent to both users and programs.

Application Programming in the UNIX System Environment 2-23

Developing Application Software

Symbolic links can also help deal with the built-in path names that appear in
the code of many commands. Changing the path names would require chang-
ing the programs and recompiling them. With symbolic links, the path names
can effectively be changed by making the original files symbolic links that point
to new files.

In a shared resource environment like RFS, symbolic links can be very useful.
For example, if it is important to have a single copy of certain administrative
files, symbolic links can be used to help share them. Symbolic links can also be
used to share resources selectively. Suppose a system administrator wants to do
a remote mount of a directory that contains sharable devices. These devices
must be in /dev on the client system, but this system has devices of its own so
the administrator does not want to mount the directory onto /dev. Rather than
do this, the administrator can mount the directory at a location other than /dev
and then use symbolic links in the /dev directory to refer to these remote dev-
ices. (This is similar to the problem of built-in path names since it is normally
assumed that devices reside in the /dev directory.)

Finally, symbolic links can be valuable within the context of the virtual file sys-
tem (VFS) architecture. With VFS new services, such as higher performance
files, network IPC, and FACE servers, may be provided on a file system basis.
Symbolic links can be used to link these services to home directories or to places
that make more sense to the application or user. Thus, you might create a data
base index file in a RAM-based file system type and symbolically link it to the
place where the data base server expects it and manages it.

Where to Find More Information

Chapter 6 in this book discusses symbolic links in detail. Refer to symlink(2)
in the Programmer’s Reference Manual for information on creating symbolic links.
See also stat(2), rename(2), 1ink(2), readlink(2), and unlink(2) in the
same manual.

2-24 System Services and Application Packaging Tools

Developing Application Software

Memory Management

The UNIX system includes a complete set of memory-mapping mechanisms.
Process address spaces are composed of a vector of memory pages, each of
which can be independently mapped and manipulated. The memory-
management facilities

m unify the system’s operations on memory

m provide a set of kernel mechanisms powerful and general enough to sup-
port the implementation of fundamental system services without special-
purpose kernel support

®m maintain consistency with the existing environment, in particular using
the UNIX file system as the name space for named virtual-memory objects

The system’s virtual memory consists of all available physical memory resources
including local and remote file systems, processor primary memory, swap space,
and other random-access devices. Named objects in the virtual memory are
referenced though the UNIX file system. However, not all file system objects
are in the virtual memory; devices that UNIX cannot treat as storage, such as
terminal and network device files, are not in the virtual memory. Some virtual
memory objects, such as private process memory and shared memory segments,
do not have names.

The Memory Mapping Interface

The applications programmer gains access to the facilities of the virtual memory
system through several sets of system calls.

m mmap establishes a mapping between a process’s address space and a vir-
tual memory object.

® mprotect assigns access protection to a block of virtual memory
N munmap removes a memory mapping
m getpagesize returns the system-dependent size of a memory page.

® mincore tells whether mapped memory pages are in primary memory

Application Programming in the UNIX System Environment 2-25

Developing Application Software

Where to Find More Information

Chapter 7 in this book gives a detailed description of the virtual memory sys-
tem. Refer to mmap(2), mprotect(2), munmap(2), getpagesize(2), and min-
core(2) in the Programmer’s Reference Manual for these manual pages.

Data Validation Tools

Data validation tools are written to help you write any administrative programs
and routines that are part of your software package (this is known as package
administration). They help standardize the appearance of administration
interaction in the UNIX system environment and also simplify development of
scripts and programs requiring administrator input.

There are two types of data validation tools:
m shell commands (to be used in shell scripts)
m visual tools (to be used in FMLI form definitions)

The shell commands perform a series of tasks; the visual tools perform a subsec-
tion of the full series. These tasks are:

prompting a user for input

validating the answer

formatting and printing a help message when requested
formatting and presenting an error message when validation fails

returning the input if it passes validation

allowing a user to quit the process

Where to Find More Information

Chapter 10 in this book describes the characteristics of these tools and intro-
duces you to the available tools for all two types. For details on a specific tool,
refer to Appendix B. It contains the manual pages for ckdate(1), ckgid(1),
ckint(1), ckkeywd(1), ckpath(1), ckrange(l), ckstr(1), cktime(l), ckuid(1),
ckyorn(l), dispgid(1), and dispuid(1). The visual tools are also documented
in the Section 1 manual pages.

2-26 System Services and Application Packaging Tools

Package Development and Installation

This section gives the software package developer information on the interfaces
provided by SVR4, specifically package software for SVR4 and how to modify
the administrator’s interface.

The interface modification tools allow you to generate files to deliver as part of
your package. When these files are installed, your package administration tasks
are added to the interface.

Packaging Application Software

Packaging software that will be installed on a computer running UNIX SVR4
differs from packaging in a pre-SVR4 environment. Pre-SVR4 packages deliver
information to the system through script actions, but an SVR4 package does this
through package information files.

A software package is made up of a group of components that together create
the software. These components naturally include the executables that comprise
the software, but they also include at least two information files and can option-
ally include other information files and scripts.

The contents of a package fall into three categories:
B required components
® optional package information files
@ optional package scripts

A packaging tool, the pkgmk command, is provided to help automate package
creation. It gathers the components of a package on the development machine
and copies and formats them onto the installation medium.

The installation tool, the pkgadd command, copies the package from the instal-
lation medium onto a system and performs system housekeeping routines that
concern the package.

Application Programming in the UNIX System Environment 2-27

Package Development and Installation

Where to Find More Information

Chapter 8 in this book gives complete details on packaging application software.
Appendix C contains package installation case studies. For details on a specific
tool, refer to Appendix B. It contains the manual pages for admin(4),
compver(4), copyright(4), depend(4), installf(1M), pkgadd(1M),
pkgask(1M), pkgchk(1M), pkginfo(l), pkginfo(4), pkgmap(4), pkgmk(1),
pkgparam(1), pkgproto(l), pkgrm(1M), pkgt rans(1), prototype(4),
removef(1M), and space(4).

Modifying the sysadm Interface

The UNIX system provides a menu interface to the most common administra-
tive procedures. It is invoked by executing sysadm and is referred to as the
sysadm interface.

You can deliver additions or changes to this interface as part of your application
software package. Creating the necessary information for an interface
modification can be done using the tools UNIX provides.

Two commands can be used to modify the interface. edsysadm allows you to
make changes or additions to the interface. It is interactive (much like the
sysadm command itself) and presents a series of prompts for information.
Which prompts appear depend on your response to them. The delsysadm
command deletes menus or tasks from the interface. In addition to these com-
mands, a group of data validation tools are provided to simplify and standard-
ize the programming of administrative interaction.

When you execute edsysadm to define menus and tasks and save those
definitions to be included in your application software package, it creates the
package description file, the menu information file, and a prototype file.

m The package description file contains information used by edsysadm to
change interface modifications already saved for packaging.

m The menu information file contains the menu or task name, where it is
located in the interface structure and, for tasks, what executable to use
when the task is invoked.

2-28 System Services and Application Packaging Tools

Package Development and Installation

m The prototype file created by edsysadm contains entries for all of the
interface modification components that must be packaged with your
software (for example, the menu information file and, for tasks, the exe-
cutables).

You must take a number of steps if you intend to modify the sysadm interface
by adding the administration to your package. You have to

m plan your package administration
®m write your administration actions
® write your help messages

m package your interface modifications

Where to Find More Information

Chapter 9 in this book gives complete details on modifying the sysadm inter-
face. For details on a specific tool, refer to Appendix B. It contains the manual
pages for delsysadm(IM) and edsysadm(1M). The System Administrator’s
Guide gives a complete description of the interface and how to use it. See also
the Programmer’s Guide: Character User Interface (FMLI and ETI) for complete
information on FMLL

Application Programming in the UNIX System Environment 2-29

FILE AND RECORD LOCKING

ONDIOOT1 AH0J3H ANV 3114

3 File and Record Locking

Introduction 3-1
Terminology 3-2
File Protection 34
Opening a File for Record Locking 34
Setting a File Lock 3-6
Setting and Removing Record Locks 39
Getting Lock Information 3-13
Deadlock Handling 3-16
Selecting Advisory or Mandatory Locking 3-17
Caveat Emptor—Mandatory Locking 3-18
Record Locking and Future Releases of the UNIX System 3-18

Table of Contents

Introduction

Mandatory and advisory file and record locking both are available on current
releases of the UNIX system. The intent of this capability to is provide a syn-
chronization mechanism for programs accessing the same stores of data simul-
taneously. Such processing is characteristic of many multiuser applications, and
the need for a standard method of dealing with the problem has been recog-
nized by standards advocates like /usr/group, an organization of UNIX system
users from businesses and campuses across the country.

Advisory file and record locking can be used to coordinate self-synchronizing
processes. In mandatory locking, the standard I/O subroutines and I/O system
calls enforce the locking protocol. In this way, at the cost of a little efficiency,
mandatory locking double checks the programs against accessing the data out of
sequence.

The remainder of this chapter describes how file and record locking capabilities
can be used. Examples are given for the correct use of record locking. Miscon-
ceptions about the amount of protection that record locking affords are
dispelled. Record locking should be viewed as a synchronization mechanism,
not a security mechanism.

The manual pages for the fent1(2) system call, the lock£(3) library function,
and fcnt1(5) data structures and commands are referred to throughout this sec-
tion. You should read them before continuing.

Flle and Record Locking 31

Terminology

Before discussing how record locking should be used, let us first define a few

terms.

Record

A contiguous set of bytes in a file. The UNIX operating system does not
impose any record structure on files. This may be done by the pro-
grams that use the files.

Cooperating Processes

Processes that work together in some well-defined fashion to accomplish
the tasks at hand. Processes that share files must request permission to
access the files before using them. File access permissions must be care-
fully set to restrict noncooperating processes from accessing those files.
The term process will be used interchangeably with cooperating process
to refer to a task obeying such protocols.

Read (Share) Locks

These are used to gain limited access to sections of files. When a read
lock is in place on a record, other processes may also read lock that
record, in whole or in part. No other process, however, may have or
obtain a write lock on an overlapping section of the file. If a process
holds a read lock it may assume that no other process will be writing or
updating that record at the same time. This access method also permits
many processes to read the given record. This might be necessary when
searching a file, without the contention involved if a write or exclusive
lock were to be used.

Write (Exclusive) Locks

These are used to gain complete control over sections of files. When a
write lock is in place on a record, no other process may read or write
lock that record, in whole or in part. If a process holds a write lock it
may assume that no other process will be reading or writing that record
at the same time.

Advisory Locking

A form of record locking that does not interact with the I/O subsystem.
Advisory locking is not enforced, for example, by creat(2), open(2),

‘read(2), or write(2). The control over records is accomplished by

requiring an appropriate record lock request before I/O operations. If
appropriate requests are always made by all processes accessing the file,
then the accessibility of the file will be controlled by the interaction of
these requests. Advisory locking depends on the individual processes

System Services and Application Packaging Tools

Terminology

to enforce the record locking protocol; it does not require an accessibil-
ity check at the time of each I/O request.

Mandatory Locking
A form of record locking that does interact with the I/O subsystem.
Access to locked records is enforced by the creat, open, read, and
write(2) system calls. If a record is locked, then access of that record
by any other process is restricted according to the type of lock on the
record. The control over records should still be performed explicitly by
requesting an appropriate record lock before I/O operations, but an
additional check is made by the system before each I/O operation to
ensure the record locking protocol is being honored. Mandatory locking
offers an extra synchronization check, but at the cost of some additional
system overhead.

File and Record Locking 3-3

File Protection

There are access permissions for UNIX system files to control who may read,
write, or execute such a file. These access permissions may only be set by the
owner of the file or by the superuser. The permissions of the directory in which
the file resides can also affect the ultimate disposition of a file. Note that if the
directory permissions allow anyone to write in it, then files within the directory
may be removed, even if those files do not have read, write or execute permis-
sion for that user. Any information that is worth protecting, is worth protecting
properly. If your application warrants the use of record locking, make sure that
the permissions on your files and directories are set properly. A record lock,
even a mandatory record lock, will only protect the portions of the files that are
locked. Other parts of these files might be corrupted if proper precautions are
not taken.

Only a known set of programs and/or administrators should be able to read or
write a data base. This can be done easily by setting the set-group-ID bit of the
data base accessing programs; see chmod(1). The files can then be accessed by a
known set of programs that obey the record locking protocol. An example of
such file protection, although record locking is not used, is the mail(1) com-
mand. In that command only the particular user and the mail command can
read and write in the unread mail files.

Opening a File for Record Locking

The first requirement for locking a file or segment of a file is having a valid
open file descriptor. If read locks are to be done, then the file must be opened
with at least read accessibility and likewise for write locks and write accessibil-
ity. For our example we will open our file for both read and write access:

3-4 System Services and Application Packaging Tools

File Protection

The file is now open for us to perform both locking and I/O functions. We then
proceed with the task of setting a lock.

Mapped files cannot be locked: if a file has been mapped, any attempt to
use file or record locking on the file fails. See mmap(2).

File and Record Locking 3-5

File Protection

Setting a File Lock

There are several ways for us to set a lock on a file. In part, these methods
depend on how the lock interacts with the rest of the program. There are also
questions of performance as well as portability. Two methods will be given
here, one using the fcnt1(2) system call, the other using the /usr/group stan-
dards compatible lockf library function call.

Locking an entire file is just a special case of record locking. For both these
methods the concept and the effect of the lock are the same. The file is locked
starting at a byte offset of zero (0) until the end of the maximum file size. This
point extends beyond any real end of the file so that no lock can be placed on
this file beyond this point. To do this the value of the size of the lock is set to
zero. The code using the fcntl system call is as follows:

3-6 System Services and Application Packaging Tools

File Protection

This portion of code tries to lock a file. This is attempted several times until
one of the following things happens:

m the file is locked
H an error occurs

m it gives up trying because MAX_TRY has been exceeded

File and Record Locking 3-7

File Protection

To perform the same task using the lockf function, the code is as follows:

It should be noted that the lockf example appears to be simpler, but the

fent 1(2) example exhibits additional flexibility. Using the fcnt1(2) method, it
is possible to set the type and start of the lock request simply by setting a few
structure variables. lockf merely sets write (exclusive) locks; an additional sys-
tem call, 1seek, is required to specify the start of the lock.

3-8 System Services and Application Packaging Tools

File Protection

Setting and Removing Record Locks

Locking a record is done the same way as locking a file except for the differing
starting point and length of the lock. We will now try to solve an interesting
and real problem. There are two records (these records may be in the same or
different file) that must be updated simultaneously so that other processes get a
consistent view of this information. (This type of problem comes up, for exam-
ple, when updating the interrecord pointers in a doubly linked list.) To do this
you must decide the following questions:

m What do you want to lock?

m For multiple locks, in what order do you want to lock and unlock the
records?

® What do you do if you succeed in getting all the required locks?
m What do you do if you fail to get all the locks?

In managing record locks, you must plan a failure strategy if you cannot obtain
all the required locks. It is because of contention for these records that we have
decided to use record locking in the first place. Different programs might:

® wait a certain amount of time, and try again
m abort the procedure and warn the user
m let the process sleep until signaled that the lock has been freed

E some combination of the above

Let us now look at our example of inserting an entry into a doubly linked list.
For the example, we will assume that the record after which the new record is
to be inserted has a read lock on it already. The lock on this record must be
changed or promoted to a write lock so that the record may be edited.

Promoting a lock (generally from read lock to write lock) is permitted if no
other process is holding a read lock in the same section of the file. If there are
processes with pending write locks that are sleeping on the same section of the
file, the lock promotion succeeds and the other (sleeping) locks wait. Promoting
(or demoting) a write lock to a read lock carries no restrictions. In either case,
the lock is merely reset with the new lock type. Because the /usr/group
lockf function does not have read locks, lock promotion is not applicable to
that call. An example of record locking with lock promotion follows:

File and Record Locking 3-9

File Protection

(continued on next page)

3-10 System Services and Application Packaging Tools

File Protection

The locks on these three records were all set to wait (sleep) if another process
was blocking them from being set. This was done with the F_SETLKW com-
mand. If the F_SETLK command was used instead, the fcnt1 system calls
would fail if blocked. The program would then have to be changed to handle
the blocked condition in each of the error return sections.

Let us now look at a similar example using the lockf function. Since there are
no read locks, all (write) locks will be referenced generically as locks.

File and Record Locking 3-11

File Protection

(continued on next page)

3-12 System Services and Application Packaging Tools

File Protection

Locks are removed in the same manner as they are set, only the lock type is dif-
ferent (F_UNLCK or F_ULOCK). An unlock cannot be blocked by another pro-
cess and will only affect locks that were placed by this process. The unlock only
affects the section of the file defined in the previous example by 1ck. It is pos-
sible to unlock or change the type of lock on a subsection of a previously set
lock. This may cause an additional lock (two locks for one system call) to be
used by the operating system. This occurs if the subsection is from the middle
of the previously set lock.

Getting Lock Infbrmation

You can determine which processes, if any, are blocking a lock from being set.
This can be used as a simple test or as a means to find locks on a file. A lock is
set up as in the previous examples and the F_GETLK command is used in the
fentl call. If the lock passed to £ent1 would be blocked, the first blocking
lock is returned to the process through the structure passed to fcntl. That is,
the lock data passed to fcntl is overwritten by blocking lock information. This
information includes two pieces of data that have not been discussed yet, 1_pid
and 1_sysid, that are only used by F_GETLK. (For systems that do not sup-
port a distributed architecture the value in 1_sysid should be ignored.) These
fields uniquely identify the process holding the lock.

If a lock passed to fcntl using the F_GETLK command would not be blocked
by another process’s lock, then the 1_type field is changed to F_UNLCK and the
remaining fields in the structure are unaffected. Let us use this capability to
print all the segments locked by other processes. Note that if there are several
read locks over the same segment only one of these will be found.

File and Record Locking 3-13

File Protection

fentl with the F_GETLK command will always return correctly (that is, it will
not sleep or fail) if the values passed to it as arguments are valid.

The lockf function with the F_TEST command can also be used to test if there
is a process blocking a lock. This function does not, however, return the infor-
mation about where the lock actually is and which process owns the lock. A
routine using lockf to test for a lock on a file follows:

3-14 System Services and Application Packaging Tools

File Protection

When a process forks, the child receives a copy of the file descriptors that the
parent has opened. The parent and child also share a common file pointer for
each file. If the parent were to seek to a point in the file, the child’s file pointer
would also be at that location. This feature has important implications when
using record locking. The current value of the file pointer is used as the refer-
ence for the offset of the beginning of the lock, as described by 1_start, when
using a 1_whence value of 1. If both the parent and child process set locks on
the same file, there is a possibility that a lock will be set using a file pointer that
was reset by the other process. This problem appears in the 1lock£(3) function
call as well and is a result of the /usr/group requirements for record locking.
If forking is used in a record locking program, the child process should close
and reopen the file if either locking method is used. This will result in the crea-
tion of a new and separate file pointer that can be manipulated without this
problem occurring. Another solution is to use the fcnt1 system call with a
1_whence value of 0 or 2. This makes the locking function atomic, so that even
processes sharing file pointers can be locked without difficulty.

File and Record Locking 3-15

File Protection

Deadlock Handling

There is a certain level of deadlock detection/avoidance built into the record
locking facility. This deadlock handling provides the same level of protection
granted by the /usr/group standard lockf call. This deadlock detection is
only valid for processes that are locking files or records on a single system.
Deadlocks can only potentially occur when the system is about to put a record
locking system call to sleep. A search is made for constraint loops of processes
that would cause the system call to sleep indefinitely. If such a situation is
found, the locking system call will fail and set errno to the deadlock error
number. If a process wishes to avoid the use of the systems deadlock detection
it should set its locks using F_GETLK instead of F_GETLKW.

3-16 System Services and Application Packaging Tools

Selecting Advisory or Mandatory Locking

The use of mandatory locking is not recommended for reasons that will be
made clear in a subsequent section. Whether or not locks are enforced by the
I/0 system calls is determined at the time the calls are made by the permissions
on the file; see chmod(2). For locks to be under mandatory enforcement, the file
must be a regular file with the set-group-ID bit on and the group execute per-
mission off. If either condition fails, all record locks are advisory. Mandatory
enforcement can be assured by the following code:

Files that are to be record locked should never have any type of execute permis-
sion set on them. This is because the operating system does not obey the record
locking protocol when executing a file.

The chmod(1) command can also be easily used to set a file to have mandatory
locking. This can be done with the command:

chmod +1 file

File and Record Locking 317

Selecting Advisory or Mandatory Locking

The 1s(1) command shows this setting when you ask for the long listing format:
1s -1 file
causes the following to be printed:

-rw-—-1--- 1 user group size mod_time file

Caveat Emptor—Mandatory Locking

®m Mandatory locking only protects those portions of a file that are locked.
Other portions of the file that are not locked may be accessed according to
normal UNIX system file permissions.

m If multiple reads or writes are necessary for an atomic transaction, the
process should explicitly lock all such pieces before any 1/O begins. Thus
advisory enforcement is sufficient for all programs that perform in this
way.

m As stated earlier, arbitrary programs should not have unrestricted access
permission to files that are important enough to record lock.

m Advisory locking is more efficient because a record lock check does not
have to be performed for every 1/O request.

Record Locking and Future Releases of the UNIX
System

Provisions have been made for file and record locking in a UNIX system
environment. In such an environment the system on which the locking process
resides may be remote from the system on which the file and record locks
reside. In this way multiple processes on different systems may put locks upon
a single file that resides on one of these or yet another system. The record locks
for a file reside on the system that maintains the file. It is also important to
note that deadlock detection/avoidance is only determined by the record locks
being held by and for a single system. Therefore, it is necessary that a process
only hold record locks on a single system at any given time for the deadlock
mechanism to be effective. If a process needs to maintain locks over several sys-
tems, it is suggested that the process avoid the sleep-when-blocked features of

3-18 System Services and Application Packaging Tools

Selecting Advisory or Mandatory Locking

fentl or lockf and that the process maintain its own deadlock detection. If
the process uses the sleep-when-blocked feature, then a timeout mechanism
should be provided by the process so that it does not hang waiting for a lock to

be cleared.

File and Record Locking 3-19

INTERPROCESS COMMUNICATION

NOILLYOINNIWINOD SS300HdHILNI

4 Interprocess Communication

Introduction 4-1
Messages 43
Using Messages 4-4
Getting Message Queues 4-7
m Using msgget 4-8
m Example Program 4-11
Controlling Message Queues 4-14
m Using msgctl 4-14
m Example Program 4-15
Operations for Messages 4-21
m Using msgop 4-21
m Example Program 4-23
Semaphores 4-32
Using Semaphores 4-34
Getting Semaphores 4-37
m Using semget 4-37
m Example Program 4-41
Controlling Semaphores 4-44
m Using semctl 4-44
m Example Program 4-46
Operations on Semaphores 4-56
m Using semop 4-56
m Example Program 4-57

Table of Contents i

Table of Contents

Shared Memory
Using Shared Memory
Getting Shared Memory Segments
m Using shmget
= Example Program
Controlling Shared Memory
m Using shmctl
= Example Program
Operations for Shared Memory
m Using shmop
m Example Program

4-63
4-64
4-67
4-67
4-70
4-73
4-74
4-75
4-81
4-81
4-83

System Services and Application Packaging Tools

Introduction

UNIX System V Release 4.0 provides several mechanisms that allow processes to
exchange data and synchronize execution. The simpler of these mechanisms are
pipes, named pipes, and signals. These are limited, however, in what they can
do. For instance,

m Pipes do not allow unrelated processes to communicate.

m Named pipes allow unrelated processes to communicate, but they cannot
provide private channels for pairs of communicating processes; that is,
any process with appropriate permission may read from or write to a
named pipe.

® Sending signals, via the kill system call, allows arbitrary processes to
communicate, but the message consists only of the signal number.

Release 4.0 also provides an InterProcess Communication (IPC) package that
supports three, more versatile types of interprocess communication. For exam-
Ple,

m Messages allow processes to send formatted data streams to arbitrary
processes.

m Semaphores allow processes to synchronize execution.
m Shared memory allows processes to share parts of their virtual address
space.
When implemented as a unit, these three mechanisms share common properties

such as

m each mechanism contains a "get" system call to create a new entry or
retrieve an existing one

m each mechanism contains a "control" system call to query the status of an
entry, to set status information, or to remove the entry from the system

m each mechanism contains an "operations" system call to perform various
operations on an entry

This chapter describes the system calls for each of these three forms of IPC.

Interprocess Communication 4-1

Introduction

This information is for programmers who write multiprocess applications. These
programmers should have a general understanding of what semaphores are and
how they are used.

Information from other sources would also be helpful. See the ipcs(1) and
ipcrm(1) manual pages in the User’s Reference Manual and the following manual
pages in the Programmer’s Reference Manual:

intro(2)
msgget(2) msgct1(2) msgop(2)
semget(2) semct1(2) semop(2)

shmget(2) shmet 1(2) shmop(2)

Included in this chapter are several example programs that show the use of
these IPC system calls. Since there are many ways to accomplish the same task
or requirement, keep in mind that the example programs were written for clar-
ity and not for program efficiency. Usually, system calls are embedded within a
larger user-written program that makes use of a particular function provided by
the calls.

4-2 System Services and Application Packaging Tools

Messages

The message type of IPC allows processes (executing programs) to communicate
through the exchange of data stored in buffers. This data is transmitted
between processes in discrete portions called messages. Processes using this
type of IPC can send and receive messages.

Before a process can send or receive a message, it must have the UNIX operat-
ing system generate the necessary software mechanisms to handle these opera-
tions. A process does this using the msgget system call. In doing this, the pro-
cess becomes the owner/creator of a message queue and specifies the initial
operation permissions for all processes, including itself. Subsequently, the
owner/creator can relinquish ownership or change the operation permissions
using the msgctl system call. However, the creator remains the creator as long
as the facility exists. Other processes with permission can use msgctl to per-
form various other control functions.

Processes which have permission and are attempting to send or receive a mes-
sage can suspend execution if they are unsuccessful at performing their opera-
tion. That is, a process which is attempting to send a message can wait until it
becomes possible to post the message to the specified message queue; the receiv-
ing process isn’t involved (except indirectly, e.g., if the consumer isn’t consum-
ing, the queue space will eventually be exhausted) and vice versa. A process
which specifies that execution is to be suspended is performing a "blocking mes-
sage operation." A process which does not allow its execution to be suspended
is performing a "nonblocking message operation."

A process performing a blocking message operation can be suspended until one
of three conditions occurs:

m It is successful.

m It receives a signal.

® The message queue is removed from the system.
System calls make these message capabilities available to processes. The calling
process passes arguments to a system call, and the system call either success-
fully or unsuccessfully performs its function. If the system call is successful, it
performs its function and returns applicable information. Otherwise, a known

error code (1) is returned to the process, and an external error number vari-
able, errno, is set accordingly.

Interprocess Communication 4-3

Messages

Using Messages

Before a message can be sent or received, a uniquely identified message queue
and data structure must be created. The unique identifier is called the message
queue identifier (msqid); it is used to identify or refer to the associated message
queue and data structure.

The message queue is used to store (header) information about each message
being sent or received. This information, which is for internal use by the sys-
tem, includes the following for each message:

m pointer to the next message on queue
m message type
m message text size
m message text address
There is one associated data structure for the uniquely identified message

queue. This data structure contains the following information related to the
message queue:

m operation permissions data (operation permission structure)
pointer to first message on the queue

pointer to last message on the queue

current number of bytes on the queue

number of messages on the queue

maximum number of bytes on the queue

process identification (PID) of last message sender

PID of last message receiver

last message send time

last message receive time

last change time

4-4 System Services and Application Packaging Tools

Messages

All include files discussed in this chapter are located in the /usr/include
or /usr/include/sys directories.

The structure definition for the associated data structure is as follows:

It is located in the <sys/msg.h> header file. Note that the msg_perm member
of this structure uses ipc_perm as a template. Figure 4-1 shows the breakout
for the operation permissions data structure.

The definition of the ipc_perm data structure is as follows:

Interprocess Communication 4-5

Messages

Figure 4-1: ipc_perm Data Structure

It is located in the <sys/ipc.h> header file and is common to all IPC facilities.
The msgget system call is used to perform one of two tasks:

m to get a new message queue identifier and create an associated message
queue and data structure for it

m to return an existing message queue identifier that already has an associ-
ated message queue and data structure

Both tasks require a key argument passed to the msgget system call. For the
first task, if the key is not already in use for an existing message queue
identifier , a new identifier is returned with an associated message queue and
data structure created for the key. This occurs as long as no system-tunable
parameters would be exceeded and a control command IPC_CREAT is specified
in the msgflg argument passed in the system call.

There is also a provision for specifying a key of value zero, known as the
private key (IPC_PRIVATE). When specified, a new identifier is always
returned with an associated message queue and data structure created for it
unless a system-tunable parameter would be exceeded. The ipcs command
will show the KEY field for the msqid as all zeros.

For the second task, if a message queue identifier exists for the key specified,
the value of the existing identifier is returned. If you do not want to have an
existing message queue identifier returned, a control command (IPC_EXCL) can

4-6 System Services and Application Packaging Tools

Messages

be specified (set) in the msgflg argument passed to the system call. ("Using
msgget" describes how to use this system call.)

When performing the first task, the process that calls msgget becomes the
owner/creator, and the associated data structure is initialized accordingly.
Remember, ownership can be changed but the creating process always remains
the creator. The message queue creator also determines the initial operation
permissions for it.

Once a uniquely identified message queue and data structure are created,
msgop (message operations) and msgctl (message control) can be used.

Message operations, as mentioned before, consist of sending and receiving mes-
sages. The msgsnd and msgrcv system calls are provided for each of these
operations (see "Operations for Messages” for details of these system calls).

The msgctl system call permits you to control the message facility in the fol-
lowing ways:

m by retrieving the data structure associated with a message queue identifier
(IPC_STAT)

m by changing operation permissions for a message queue (IPC_SET)

m by changing the size (msg_gbytes) of the message queue for a particular
message queue identifier (IPC_SET)

® by removing a particular message queue identifier from the UNIX operat-
ing system along with its associated message queue and data structure
(IPC_RMID)

See "Controlling Message Queues” for msgctl system call details.
Getting Message Queues

This section describes how to use the msgget system call. The accompanying
program illustrates its use.

Interprocess Communication 4-7

Using msgget

The synopsis found in the msgget(2) entry in the Programmer’s Reference Manual
is as follows:

All of these include files are located in the /usr/include/sys directory of
the UNIX operating system.

The following line in the synopsis:
int msgget (key, msgflg)

informs you that msgget is a function with two formal arguments that returns
an integer-type value. The next two lines:

key t key;

int msgflg;
declare the types of the formal arguments. key_t is defined by a typedef in
the <sys/types.h> header file to be an integral type.

The integer returned from this function upon successful completion is the mes-
sage queue identifier that was discussed earlier. Upon failure, the external vari-
able errno is set to indicate the reason for failure, and the value -1 (which is
not a valid msqid) is returned.

As declared, the process calling the msgget system call must supply two argu-
ments to be passed to the formal key and msgflg arguments.

A new msqid with an associated message queue and data structure is provided
if either

4-8 System Services and Application Packaging Tools

Messages

® key is equal to IPC_PRIVATE,
or

m key is a unique integer and the control command IPC_CREAT is specified
in the msgflg argument.

The value passed to the msgflg argument must be an integer-type value that
will specify the following:

m operations permissions

m control fields (commands)

Operation permissions determine the operations that processes are permitted to
perform on the associated message queue. "Read" permission is necessary for
receiving messages or for determining queue status by means of a msgctl
IPC_STAT operation. "Write" permission is necessary for sending messages.
Figure 4-2 reflects the numeric values (expressed in octal notation) for the valid
operation permissions codes.

Figure 4-2: Operation Permissions Codes

Operation Permissions | Octal Value
Read by User 00400
Write by User 00200
Read by Group 00040
Write by Group 00020
Read by Others 00004
Write by Others 00002

A specific value is derived by adding or bitwise ORing the octal values for the
operation permissions wanted. That is, if read by user and read/write by others
is desired, the code value would be 00406 (00400 plus 00006). There are con-
stants located in the <sys/msg.h> header file which can be used for the user
operations permissions. They are as follows:

MSG_W 0200 /* write permissions by owner */

MSG_R 0400 /* read permissions by owner */

Interprocess Communication 4-9

Control flags are predefined constants (represented by all uppercase letters).
The flags which apply to the msgget system call are IPC_CREAT and
IPC_EXCL and are defined in the <sys/ipc.h> header file.

The value for msgflg is therefore a combination of operation permissions and
control commands. After determining the value for the operation permissions
as previously described, the desired flag(s) can be specified. This is accom-
plished by adding or bitwise ORing (|) them with the operation permissions;
the bit positions and values for the control commands in relation to those of the
operation permissions make this possible.

The msgflg value can easily be set by using the flag names in conjunction with
the octal operation permissions value:

msqid = msgget (key, (IPC_CREAT | 0400));
msqid = msgget (key, (IPC_CREAT | IPC_EXCL | 0400));

As specified by the msgget(2) page in the Programmer’s Reference Manual, suc-
cess or failure of this system call depends upon the argument values for key
and msgflg or system-tunable parameters. The system call will attempt to
return a new message queue identifier if one of the following conditions is true:

m key is equal to IPC_PRIVATE

m key does not already have a message queue identifier associated with it
and (msgflg and IPC_CREAT) is "true” (not zero).

The key argument can be set to IPC_PRIVATE like this:
msqid = msgget (IPC_PRIVATE, msgflg);

The system call will always be attempted. Exceeding the MSGMNTI system-
tunable parameter always causes a failure. The MSGMNI system-tunable param-
eter determines the systemwide number of unique message queues that may be
in use at any given time.

IPC_EXCL is another control command used in conjunction with IPC_CREAT.
It will cause the system call to return an error if a message queue identifier
already exists for the specified key. This is necessary to prevent the process
from thinking that it has received a new identifier when it has not. In other
words, when both IPC_CREAT and IPC_EXCL are specified, a new message
queue identifier is returned if the system call is successful.

4-10 System Services and Application Packaging Tools

Messages

Refer to the msgget(2) page in the Programmer’s Reference Manual for specific,
associated data structure initialization for successful completion. The specific
failure conditions and their error names are contained there also.

Example Program

Figure 4-3 is a menu-driven program. It allows all possible combinations of
using the msgget system call to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are
pointed out.

This program begins (lines 4-8) by including the required header files as
specified by the msgget(2) entry in the Programmer’s Reference Manual. Note
that the <sys/errno.h> header file is included as opposed to declaring errno
as an external variable; either method will work.

Variable names have been chosen to be as close as possible to those in the
synopsis for the system call. Their declarations are self explanatory. These
names make the programs more readable are perfectly legal since they are local
to the program. The variables declared for this program and what they are
used for are as follows:

key used to pass the value for the desired key
opperm used to store the desired operation permissions
flags used to store the desired control commands (flags)

opperm_flags
used to store the combination from the logical ORing of the
opperm and flags variables; it is then used in the system
call to pass the msgflg argument

msqid used for returning the message queue identification number
for a successful system call or the error code (-1) for an
unsuccessful one.

The program begins by prompting for a hexadecimal key, an octal operation
permissions code, and finally for the control command combinations (flags)
which are selected from a menu (lines 15-32). All possible combinations are
allowed even though they might not be viable. This allows errors to be
observed for illegal combinations.

Interprocess Communication 4-11

Next, the menu selection for the flags is combined with the operation permis-
sions, and the result is stored in the opperm_flags variable (lines 36-51).

The system call is made next, and the result is stored in the msqid variable (line
53).

Since the msqid variable now contains a valid message queue identifier or the
error code (-1), it is tested to see if an error occurred (line 55). If msqid equals
-1, a message indicates that an error resulted, and the external errno variable
is displayed (line 57).

If no error occurred, the returned message queue identifier is displayed (line
61).

The example program for the msgget system call follows. We suggest you
name the program file msgget . c and the executable file msgget.

Figure 4-3: msgget System Call Example

(continued on next page)

4-12 System Services and Application Packaging Tools

Messages

Figure 4-3: msgget System Call Example (continued)

(continued on next page)

Interprocess Communication 4-13

Messages

Figure 4-3: msgget System Call Example (continued)

Controlling Message Queues

This section describes how to use the msgctl system call. The accompanying
program illustrates its use.
Using msgctl

The synopsis found in the msgct 1(2) entry in the Programmer’s Reference Manual
is as follows:

The msgctl system call requires three arguments to be passed to it; it returns
an integer-type value.

When successful, it returns a zero value; when unsuccessful, it returns a —1.

The msqid variable must be a valid, non-negative, integer value. In other
words, it must have already been created by using the msgget system call.

4-14 System Services and Application Packaging Tools

Messages

The cmd argument can be any one of the following values:

IPC_STAT return the status information contained in the associated data
structure for the specified message queue identifier, and
place it in the data structure pointed to by the buf pointer in
the user memory area.

IPC_SET for the specified message queue identifier, set the effective
user and group identification, operation permissions, and the
number of bytes for the message queue to the values con-
tained in the data structure pointed to by the buf pointer in
the user memory area.

IPC_RMID remove the specified message queue identifier along with its
associated message queue and data structure.

A process must have an effective user identification of OWNER/CREATOR or
superuser to perform an IPC_SET or IPC_RMID control command. Read per-
mission is required to perform the IPC_STAT control command.

The details of this system call are discussed in the following example program.
If you need more information on the logic manipulations in this program, read
the msgget(2) section of the Programmer’s Reference Manual; it goes into more
detail than would be practical for this document.

Example Program

Figure 4-4 is a menu-driven program. It allows all possible combinations of
using the msgct1 system call to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are
pointed out.

This program begins (lines 5-9) by including the required header files as
specified by the msgct1(2) entry in the Programmer’s Reference Manual. Note in
this program that errno is declared as an external variable, and therefore, the
<sys/errno.h> header file does not have to be included.

Variable and structure names have been chosen to be as close as possible to
those in the synopsis for the system call. Their declarations are self explanatory.
These names make the program more readable and are perfectly legal since they

Interprocess Communication ‘ 4-15

Messages

are local to the program. The variables declared for this program and what
they are used for are as follows:

uid
gid
mode
bytes

rtrn

msqid

command

choice

msqid_ds

buf

used to store the IPC_SET value for the effective user
identification

used to store the IPC_SET value for the effective group
identification

used to store the IPC_SET value for the operation permis-
sions

used to store the IPC_SET value for the number of bytes in
the message queue (msg_gbytes)

used to store the return integer value from the system call

used to store and pass the message queue identifier to the
system call

used to store the code for the desired control command so
that subsequent processing can be performed on it

used to determine which member is to be changed for the
IPC_SET control command

used to receive the specified message queue identifier's data
structure when an IPC_STAT control command is performed

a pointer passed to the system call which locates the data
structure in the user memory area where the IPC_STAT con-
trol command is to place its return values or where the
IPC_SET command gets the values to set

Note that the msqid_ds data structure in this program (line 16) uses the data
structure, located in the <sys/msg.h> header file of the same name, as a tem-
plate for its declaration.

The next important thing to observe is that although the buf pointer is declared
to be a pointer to a data structure of the msqid_ds type, it must also be initial-
ized to contain the address of the user memory area data structure (line 17).
Now that all of the required declarations have been explained for this program,
this is how it works.

4-16

System Services and Application Packaging Tools

Messages

First, the program prompts for a valid message queue identifier which is stored
in the msqid variable (lines 19, 20). This is required for every msgctl system
call.

Then the code for the desired control command must be entered (lines 21-27)
and stored in the command variable. The code is tested to determine the con-
trol command for subsequent processing.

If the IPC_ STAT control command is selected (code 1), the system call is per-
formed (lines 37, 38) and the status information returned is printed out (lines
39-46); only the members that can be set are printed out in this program. Note
that if the system call is unsuccessful (line 106), the status information of the last
successful call is printed out. In addition, an error message is displayed and the
errno variable is printed out (line 108). If the system call is successful, a mes-
sage indicates this along with the message queue identifier used (lines 110-113).

If the IPC_SET control command is selected (code 2), the first thing is to get the
current status information for the message queue identifier specified (lines 50-
52). This is necessary because this example program provides for changing only
one member at a time, and the system call changes all of them. Also, if an
invalid value happened to be stored in the user memory area for one of these
members, it would cause repetitive failures for this control command until
corrected. The next thing the program does is to prompt for a code correspond-
ing to the member to be changed (lines 53-59). This code is stored in the choice
variable (line 60). Now, depending upon the member picked, the program
prompts for the new value (lines 66-95). The value is placed into the appropri-
ate member in the user memory area data structure, and the system call is made
(lines 96-98). Depending upon success or failure, the program returns the same
messages as for IPC_STAT above.

If the IPC_RMID control command (code 3) is selected, the system call is per-
formed (lines 100-103), and the msqid along with its associated message queue
and data structure are removed from the UNIX operating system. Note that the
buf pointer is ignored in performing this control command, and its value can
be zero or NULL. Depending upon the success or failure, the program returns
the same messages as for the other control commands.

The example program for the msgctl system call follows. We suggest that you
name the source program file msgetl. c and the executable file msgctl.

Interprocess Communication 4-17

Messages

Figure 4-4: msgctl System Call Example

(oéntlnuéd on next page)

4-18 System Services and Application Packaging Tools

Messages

Figure 4-4: msgctl System Call Example (continued)

(continued on next page)

Interprocess Communication 4-19

Figure 4-4: msgct1 System Call Example (continued)

4-20 System Services and Application Packaging Tools

Messages

Operations for Messages

This section describes how to use the msgsnd and msgrcv system calls. The
accompanying program illustrates their use.
Using msgop

The synopsis found in the msgop(2) entry in the Programmer’s Reference Manual
is as follows:

Sending a Message

The msgsnd system call requires four arguments to be passed to it. It returns
an integer value.

When successful, it returns a zero value; when unsuccessful, msgsnd returns a
-1.

The msqid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the msgget system call.

The msgp argument is a pointer to a structure in the user memory area that
contains the type of the message and the message to be sent.

Interprocess Communication 4-21

Messages

The msgsz argument specifies the length of the character array in the data
structure pointed to by the msgp argument. This is the length of the message.
The maximum size of this array is determined by the MSGMAX system-tunable
parameter.

The msgflg argument allows the "blocking message operation” to be performed
if the IPC_NOWAIT flag is not set (msgflg and IPC_NOWAIT)= = 0); the opera-
tion would block if the total number of bytes allowed on the specified message
queue are in use (msg_gbytes or MSGMNB), or the total system-wide number of
messages on all queues is equal to the system- imposed limit (MSGTQL). If the
IPC_NOWAIT flag is set, the system call will fail and return a -1.

The msg_gbytes data structure member can be lowered from MSGMNB by
using the msgct1l IPC_SET control command, but only the superuser can raise
it afterwards.

Further details of this system call are discussed in the following program. If
you need more information on the logic manipulations in this program, read
"Using msgget". It goes into more detail than would be practical for every sys-
tem call.

Recelving Messages

The msgrcv system call requires five arguments to be passed to it; it returns an
integer value.

When successful, it returns a value equal to the number of bytes received; when
unsuccessful it returns a —1.

The msqid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the msgget system call.

The msgp argument is a pointer to a structure in the user memory area that will
receive the message type and the message text.

The msgsz argument specifies the length of the message to be received. If its
value is less than the message in the array, an error can be returned if desired
(see the msgflg argument below).

The msgtyp argument is used to pick the first message on the message queue
of the particular type specified. If it is equal to zero, the first message on the
queue is received; if it is greater than zero, the first message of the same type is
received; if it is less than zero, the lowest type that is less than or equal to its
absolute value is received.

4-22 System Services and Application Packaging Tools

Messages

The msgflg argument allows the "blocking message operation” to be performed
if the IPC_NOWAIT flag is not set ((msgflg and IPC_NOWAIT) == 0); the opera-
tion would block if there is not a message on the message queue of the desired
type (msgtyp) to be received. If the IPC_NOWAIT flag is set, the system call
will fail immediately when there is not a message of the desired type on the
queue. msgflg can also specify that the system call fail if the message is longer
than the size to be received; this is done by not setting the MSG_NOERROR flag
in the msgflg argument ((msgflg and MSG_NOERROR)) == 0). If the
MSG_NOERROR flag is set, the message is truncated to the length specified by the
msgsz argument of msgrcv.

Further details of this system call are discussed in the following program. If
you need more information on the logic manipulations in this program read
"Using msgget". It goes into more detail than would be practical for every sys-
tem call.

Example Program

Figure 4-5 is a menu-driven program. It allows all possible combinations of
using the msgsnd and msgrcv system calls to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are
pointed out.

This program begins (lines 5-9) by including the required header files as
specified by the msgop(2) entry in the Programmer’s Reference Manual. Note that
in this program errno is declared as an external variable; therefore, the
<sys/errno.h> header file does not have to be included.

Variable and structure names have been chosen to be as close as possible to
those in the synopsis. Their declarations are self explanatory. These names
make the program more readable and are perfectly legal since they are local to
the program. The variables declared for this program and what they are used
for are as follows:

sndbuf used as a buffer to contain a message to be sent (line 13); it
uses the msgbufl data structure as a template (lines 10-13).
The msgbufl structure (lines 10-13) is a duplicate of the
msgbuf structure contained in the <sys/msg.h> header
file, except that the size of the character array for mtext is
tailored to fit this application. The msgbuf structure should

Interprocess Communication 4-23

Messages

rcvbuf

msgp

flag

flags

choice
rtrn

msqid

msgsz

msgflg

msgtyp

4-24

not be used directly because mtext has only one element
that would limit the size of each message to one character.
Instead, declare your own structure. It should be identical to
msgbuf except that the size of the mtext array should fit
your application.

used as a buffer to receive a message (line 13); it uses the
msgbufl data structure as a template (lines 10-13)

used as a pointer (line 13) to both the sndbuf and rcvbuf
buffers

used as a counter for inputting characters from the keyboard,
storing them in the array, and keeping track of the message
length for the msgsnd system call; it is also used as a
counter to output the received message for the msgrcv sys-
tem call

used to receive the input character from the getchar func-
tion (line 50)

used to store the code of IPC_NOWAIT for the msgsnd sys-
tem call (line 61)

used to store the code of the IPC_NOWAIT or MSG_NOERROR
flags for the msgrcv system call (line 117)

used to store the code for sending or receiving (line 30)
used to store the return values from all system calls

used to store and pass the desired message queue identifier
for both system calls

used to store and pass the size of the message to be sent or
received

used to pass the value of flag for sending or the value of
flags for receiving

used for specifying the message type for sending or for pick-
ing a message type for receiving.

System Services and Application Packaging Tools

Messages

Note that a msqid_ds data structure is set up in the program (line 21) with a
pointer initialized to point to it (line 22); this will allow the data structure
members affected by message operations to be observed. They are observed by
using the msgctl (IPC_STAT) system call to get them for the program to print
them out (lines 80-92 and lines 160-167).

The first thing the program prompts for is whether to send or receive a mes-
sage. A corresponding code must be entered for the desired operation; it is
stored in the choice variable (lines 23-30). Depending upon the code, the pro-
gram proceeds as in the following msgsnd or msgrcv sections.

msgsnd

When the code is to send a message, the msgp pointer is initialized (line 33) to
the address of the send data structure, sndbuf. Next, a message type must be
entered for the message; it is stored in the variable msgtyp (line 42), and then
(line 43) it is put into the mtype member of the data structure pointed to by
msgp.

The program now prompts for a message to be entered from the keyboard and
enters a loop of getting and storing into the mtext array of the data structure
(lines 48-51). This will continue until an end-of-file is recognized which, for the
getchar function, is a control-D (CTRL-D) immediately following a carriage
return (<CR>).

The message is immediately echoed from the mtext array of the sndbuf data
structure to provide feedback (lines 54-56).

The next and final thing that must be decided is whether to set the
IPC_NOWAIT flag. The program does this by requesting that a code of a 1 be
entered for yes or anything else for no (lines 57-65). It is stored in the flag vari-
able. If a 1 is entered, IPC_NOWAIT is logically ORed with msgflg; otherwise,
msgflg is set to zero.

The msgsnd system call is performed (line 69). If it is unsuccessful, a failure
message is displayed along with the error number (lines 70-72). If it is success-
ful, the returned value is printed and should be zero (lines 73-76).

Every time a message is successfully sent, three members of the associated data
structure are updated. They are:

Interprocess Communication 4-25

Messages

msg_qnum represents the total number of messages on the message
queue; it is incremented by one.

msg_lspid contains the process identification (PID) number of the last
process sending a message; it is set accordingly.

msg_stime contains the time in seconds since January 1, 1970, Greenwich
Mean Time (GMT) of the last message sent; it is set accord-

ingly.

These members are displayed after every successful message send operation
(lines 79-92).

msgrcv

When the code is to receive a message, the program continues execution as in
the following paragraphs.

The msgp pointer is initialized to the rcvbuf data structure (line 99).

Next, the message queue identifier of the message queue from which to receive
the message is requested; it is stored in msqid (lines 100-103).

The message type is requested; it is stored in msgtyp (lines 104-107).

The code for the desired combination of control flags is requested next; it is
stored in flags (lines 108-117). Depending upon the selected combination,
msgflg is set accordingly (lines 118-131).

Finally, the number of bytes to be received is requested; it is stored in msgsz
(lines 132-135).

The msgrcv system call is performed (line 142). If it is unsuccessful, a message
and error number is displayed (lines 143-145). If successful, a message indicates
s0, and the number of bytes returned and the msg type returned (because the
value returned may be different from the value requested) is displayed followed
by the received message (lines 150-156).

When a message is successfully received, three members of the associated data
structure are updated. They are:

msg_qnum contains the number of messages on the message queue; it is
decremented by one.

4-26 System Services and Application Packaging Tools

Messages

msg_lrpid contains the PID of the last process receiving a message; it is
set accordingly.

msg_rtime contains the time in seconds since January 1, 1970, Greenwich
Mean Time (GMT) that the last process received a message; it
is set accordingly.

Figure 4-5 shows the msgop system calls. We suggest that you put the program
into a source file called msgop. ¢ and then compile it into an executable file
called msgop.

Figure 4-5: msgop System Call Example

(continued on next page)

Interprocess Communication 4-27

Messages

Figure 4-5: msgop System Call Example (continued)

(continued on next page)

4-28 System Services and Application Packaging Tools

Messages

Figure 4-5: msgop System Call Example (continued)

(continued on next page)

Interprocess Communication 4-29

Messages

Figure 4-5: msgop System Call Example (continued)

(continued on next page)

4-30 System Services and Application Packaging Tools

Figure 4-5: msgop System Call Example (continued)

Interprocess Communication 4-31

Semaphores

The semaphore type of IPC allows processes (executing programs) to communi-
cate through the exchange of semaphore values. Since many applications
require the use of more than one semaphore, the UNIX operating system has
the ability to create sets or arrays of semaphores. A semaphore set can contain
one or more semaphores up to a limit set by the system administrator. The tun-
able parameter, SEMMSL, has a default value of 25. Semaphore sets are created
by using the semget (semaphore get) system call.

The process performing the semget system call becomes the owner/creator,
determines how many semaphores are in the set, and sets the initial operation
permissions for all processes, including itself. This process can subsequently
relinquish ownership of the set or change the operation permissions using the
semct 1(semaphore control) system call. The creating process always remains
the creator as long as the facility exists. Other processes with permlsswn can
use semctl to perform other control functions.

Any process can manipulate the semaphore(s) if the owner of the semaphore
grants permission. Each semaphore within a set can be incremented and decre-
mented with the semop(2) system call (documented in the Programmer’s Refer-
ence Manual).

To increment a semaphore, an integer value of the desired magnitude is passed
to the semop system call. To decrement a semaphore, a minus (=) value of the
desired magnitude is passed.

The UNIX operating system ensures that only one process can manipulate a
semaphore set at any given time. Simultaneous requests are performed sequen-
tially in an arbltrary manner.

A process can test for a semaphore value to be greater than a certain value by
attempting to decrement the semaphore by one more than that value. If the
process is successful, then the semaphore value is greater than that certain
value. Otherwise, the semaphore value is not. While doing this, the process
can have its execution suspended (IPC_NOWAIT flag not set) until the sema-
phore value would permit the operation (other processes increment the sema-
phore), or the semaphore facility is removed.

The ability to suspend execution is called a "blocking semaphore operation."
This ability is also available for a process which is testing for a semaphore equal
to zero; only read permission is required for this test; it is accomplished by
passing a value of zero to the semop (semaphore operation) system call.

4-32 System Services and Application Packaging Tools

Semaphores

On the other hand, if the process is not successful and did not request to have
its execution suspended, it is called a "nonblocking semaphore operation." In
this case, the process is returned a known error code (-1), and the external
errno variable is set accordingly.

The blocking semaphore operation allows processes to communicate based on
the values of semaphores at different points in time. Remember also that IPC
facilities remain in the UNIX operating system until removed by a permitted
process or until the system is reinitialized.

Operating on a semaphore set is done by using the semop system call.

When a set of semaphores is created, the first semaphore in the set is semaphore
number zero. The last semaphore number in the set is numbered one less than
the total in the set.

A single system call can be used to perform a sequence of these
"blocking/nonblocking operations” on a set of semaphores. When performing a
sequence of operations, the blocking/nonblocking operations can be applied to
any or all of the semaphores in the set. Also, the operations can be applied in
any order of semaphore number. However, no operations are done until they
can all be done successfully. For example, if the first three of six operations on
a set of ten semaphores could be completed successfully, but the fourth opera-
tion would be blocked, no changes are made to the set until all six operations
can be performed without blocking. Either the operations are successful and the
semaphores are changed, or one ("nonblocking") operation is unsuccessful and
none are changed. In short, the operations are "atomically performed."

Remember, any unsuccessful nonblocking operation for a single semaphore or a
set of semaphores causes immediate return with no operations performed at all.
When this occurs, an error code (-1) is returned to the process, and the external
variable errno is set accordingly.

System calls (documented in the Programmer’s Reference Manual) make these
semaphore capabilities available to processes. The calling process passes argu-
ments to a system call, and the system call either successfully or unsuccessfully
performs its function. If the system call is successful, it performs its function
and returns the appropriate information. Otherwise, a known error code (-1) is
returned to the process, and the external variable errno is set accordingly.

Interprocess Communication 4-33

Semaphores

Using Semaphores

Before semaphores can be used (operated on or controlled) a uniquely identified
data structure and semaphore set (array) must be created. The unique identifier
is called the semaphore set identifier (semid); it is used to identify or refer to a
particular data structure and semaphore set.

The semaphore set contains a predefined number of structures in an array, one
structure for each semaphore in the set. The number of semaphores (nsems) in
a semaphore set is user selectable. The following members are in each structure
within a semaphore set:

m semaphore value
m PID performing last operation

8 number of processes waiting for the semaphore value to become greater
than its current value

® number of processes waiting for the semaphore value to equal zero

There is one associated data structure for the uniquely identified semaphore set.
This data structure contains the following information related to the semaphore
set:

operation permissions data (operation permissions structure)

pointer to first semaphore in the set (array)

n

n

m number of semaphores in the set
m last semaphore operation time

n

last semaphore change time

The C programming language data structure definition for the semaphore set
(array member) is as follows:

4-34 System Services and Application Packaging Tools

Semaphores

It is located in the <sys/sem. h> header file.

Likewise, the structure definition for the associated semaphore data structure is
as follows:

It is also located in the <sys/sem.h> header file. Note that the sem _perm
member of this structure uses ipc_perm as a template. Figure 4-1 shows the
breakout for the operation permissions data structure.

The ipc_perm data structure is the same for all IPC facilities; it is located in the
<sys/ipc.h> header file and is shown in the "Messages" section.

The semget system call is used to perform two tasks:

® to get a new semaphore set identifier and create an associated data struc-
ture and semaphore set for it

Interprocess Communication 4-35

Semaphores

m to return an existing semaphore set identifier that already has an associ-
ated data structure and semaphore set

The task performed is determined by the value of the key argument passed to
the semget system call. For the first task, if the key is not already in use for
an existing semid and the IPC_CREAT flag is set, a new semid is returned
with an associated data structure and semaphore set created for it provided no
system tunable parameter would be exceeded.

There is also a provision for specifying a key of value zero (0), which is known
as the private key (IPC_PRIVATE). When specified, a new identifier is always
returned with an associated data structure and semaphore set created for it,
unless a system-tunable parameter would be exceeded. The ipcs command
will show the key field for the semid as all zeros.

When performing the first task, the process which calls semget becomes the
owner/creator, and the associated data structure is initialized accordingly.
Remember, ownership can be changed, but the creating process always remains
the creator (see "Controlling Semaphores”). The creator of the semaphore set
also determines the initial operation permissions for the facility.

For the second task, if a semaphore set identifier exists for the key specified, the
value of the existing identifier is returned. If you do not want to have an exist-
ing semaphore set identifier returned, a control command (IPC_EXCL) can be
specified (set) in the semflg argument passed to the system call. The system
call will fail if it is passed a value for the number of semaphores (nsems) that is
greater than the number actually in the set; if you do not know how many
semaphores are in the set, use 0 for nsems. ("Using semget" describes how to
use this system call.)

Once a uniquely identified semaphore set and data structure are created, semop
(semaphore operations) and semct1 (semaphore control) can be used.

Semaphore operations consist of incrementing, decrementing, and testing for
zero. The semop system call is used to perform these operations (see "Opera-
tions on Semaphores" for details of this system call).

The semct1 system call permits you to control the semaphore facility in the fol-
lowing ways:

4-36 System Services and Application Packaging Tools

Semaphores

m by returning the value of a semaphore (GETVAL)
m by setting the value of a semaphore (SETVAL)

m by returning the PID of the last process performing an operation on a
semaphore set (GETPID)

m by returning the number of processes waiting for a semaphore value to
become greater than its current value (GETNCNT)

m by returning the number of processes waiting for a semaphore value to
equal zero (GETZCNT)

m by getting all semaphore values in a set and placing them in an array in
user memory (GETALL)

m by setting all semaphore values in a semaphore set from an array of
values in user memory (SETALL)

m by retrieving the data structure associated with a semaphore set
(IPC_STAT)

m by changing operation permissions for a semaphore set (IPC_SET)

m by removing a particular semaphore set identifier from the UNIX operat-
ing system along with its associated data structure and semaphore set
(IPC_RMID)

See "Controlling Semaphores” for details of the semct1 system call.

Getting Semaphores

This section describes how to use the semget system call. The accompanying
program illustrates its use.

Using semget

The synopsis found in the semget(2) entry in the Programmer’s Reference Manual
is as follows:

Interprocess Communication 4-37

Semaphores

The following line in the synopsis:
int semget (key, nsems, semflg)

informs you that semget is a function with three formal arguments that returns
an integer-type value. The next two lines:

key t key:;
int nsems, semflg;

declare the types of the formal arguments. key_t is defined by a typedef in
the <sys/types.h> header file to be an integer.

The integer returned from this system call upon successful completion is the
semaphore set identifier that was discussed above.

The process calling the semget system call must supply three actual arguments
to be passed to the formal key, nsems, and semflg arguments.

A new semid with an associated semaphore set and data structure is created if
either

m key is equal to IPC_PRIVATE,
or

B key is a unique integer and semflg ANDed with IPC_CREAT is "true."
The value passed to the semflg argument must be an integer that will specify
the following:

B operation permissions

4-38 System Services and Application Packaging Tools

Semaphores

m control fields (commands)

Figure 4-6 reflects the numeric values (expressed in octal notation) for the valid
operation permissions codes.

Figure 4-6: Operation Permissions Codes

Operation Permissions | Octal Value
Read by User 00400
Alter by User 00200
Read by Group 00040
Alter by Group 00020
Read by Others 00004
Alter by Others 00002

A specific value is derived by adding or bitwise ORing the values for the opera-
tion permissions wanted. That is, if read by user and read/alter by others is
desired, the code value would be 00406 (00400 plus 00006). There are constants
#define’d in the <sys/sem.h> header file which can be used for the user
(OWNER). They are as follows:

SEM_A 0200 /* alter permission by owner */
SEM_R 0400 /* read permission by owner */

Control flags are predefined constants (represented by all uppercase letters).
The flags that apply to the semget system call are IPC_CREAT and IPC_EXCL
and are defined in the <sys/ipc.h> header file.

The value for semflg is, therefore, a combination of operation permissions and
control commands. After determining the value for the operation permissions
as previously described, the desired flag(s) can be specified. This specification is
accomplished by adding or bitwise ORing (|) them with the operation permis-
sions; the bit positions and values for the control commands in relation to those
of the operation permissions make this possible.

The semflg value can easily be set by using the flag names in conjunction with
the octal operation permissions value:

Interprocess Communication 4-39

Semaphores

semid = semget (key, nsems, (IPC_CREAT | 0400));
semid = semget (key, nsems, (IPC_CREAT | IPC_EXCL | 0400));

As specified by the semget(2) entry in the Programmer’s Reference Manual, suc-
cess or failure of this system call depends upon the actual argument values for
key, nsems, and semflg, and system-tunable parameters. The system call will
attempt to return a new semaphore set identifier if one of the following condi-
tions is true:

W key is equal to IPC_PRIVATE

® key does not already have a semaphore set identifier associated with it
and (semflg & IPC_CREAT) is "true” (not zero).

The key argument can be set to IPC_PRIVATE like this:
semid = semget (IPC_PRIVATE, nsems, semflg);

Exceeding the SEMMNI, SEMMNS, or SEMMSL system-tunable parameters will
always cause a failure. The SEMMNI system-tunable parameter determines the
maximum number of unique semaphore sets (semid’s) that may be in use at
any given time. The SEMMNS system-tunable parameter determines the max-
imum number of semaphores in all semaphore sets system wide. The SEMMSL
system-tunable parameter determines the maximum number of semaphores in
each semaphore set.

IPC_EXCL is another control command used in conjunction with IPC_CREAT.
It will cause the system call to return an error if a semaphore set identifier
already exists for the specified key provided. This is necessary to prevent the
process from thinking that it has received a new (unique) identifier when it has
not. In other words, when both IPC_CREAT and IPC_EXCL are specified, a
new semaphore set identifier is returned if the system call is successful. Any
value for semflg returns a new identifier if the key equals zero
(IPC_PRIVATE) and no system- tunable parameters are exceeded.

Refer to the semget(2) manual page in the Programmer’s Reference Manual for
specific associated data structure initialization for successful completion. The
specific failure conditions and their error names are contained there also.

4-40 System Services and Application Packaging Tools

Semaphores

Example Program

Figure 4-7 is a menu-driven program. It allows all possible combinations of
using the semget system call to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are
pointed out.

This program begins (lines 4-8) by including the required header files as
specified by the semget(2) entry in the Programmer’s Reference Manual. Note
that the <sys/errno.h> header file is included as opposed to declaring errno
as an external variable; either method will work.

Variable names have been chosen to be as close as possible to those in the
synopsis. Their declarations are self explanatory. These names make the pro-
gram more readable and are perfectly legal since they are local to the program.
The variables declared for this program and what they are used for are as fol-
lows:

key used to pass the value for the desired key
opperm used to store the desired operation permissions
flags used to store the desired control commands (flags)

opperm_flags
used to store the combination from the logical ORing of the
opperm and flags variables; it is then used in the system
call to pass the semflg argument

semid used for returning the semaphore set identification number
for a successful system call or the error code (-1) for an
unsuccessful one.

The program begins by prompting for a hexadecimal key, an octal operation
permissions code, and the control command combinations (flags) which are
selected from a menu (lines 15-32). All possible combinations are allowed even
though they might not be viable. This allows observing the errors for illegal
combinations.

Next, the menu selection for the flags is combined with the operation permis-
sions; the result is stored in opperm_flags (lines 36-52).

Interprocess Communication 4-41

Semaphores

Then, the number of semaphores for the set is requested (lines 53-57); its value
is stored in nsems.

The system call is made next; the result is stored in the semid (lines 60, 61).

Since the semid variable now contains a valid semaphore set identifier or the
error code (-1), it is tested to see if an error occurred (line 63). If semid equals
-1, a message indicates that an error resulted and the external errno variable is
displayed (line 65). Remember that the external errno variable is only set
when a system call fails; it should only be examined immediately following sys-
tem calls.

If no error occurred, the returned semaphore set identifier is displayed (line 69).

The example program for the semget system call follows. We suggest that you
name the source program file semget . ¢ and the executable file semget.

Figure 4-7: semget System Call Example

(continued on next page)

4-42 System Services and Application Packaging Tools

Semaphores

Figure 4-7: semget System Call Example (continued)

‘(c'ontinued on next page)

Interprocess Communication 4-43

Semaphores

Figure 4-7: semget System Call Example (continued)

Controlling Semaphores

This section describes how to use the semct1 system call. The accompanying
program illustrates its use.

Using semctl

The synopsis found in the semct 1(2) entry in the Programmer’s Reference Manual
is as follows:

4-44 System Services and Application Packaging Tools

Semaphores

The semctl system call requires four arguments to be passed to it, and it
returns an integer value.

The semid argument must be a valid, non-negative, integer value that has
already been created by using the semget system call.

The semnum argument is used to select a semaphore by its number. This relates
to sequences of operations (atomically performed) on the set. When a set of
semaphores is created, the first semaphore is number 0, and the last semaphore
is numbered one less than the total in the set.

The cmd argument can be replaced by one of the following values:

GETVAL return the value of a single semaphore within a semaphore
set

SETVAL set the value of a single semaphore within a semaphore set

GETPID return the PID of the process that performed the last opera-
tion on the semaphore within a semaphore set

GETNCNT return the number of processes waiting for the value of a
particular semaphore to become greater than its current
value

GETZCNT return the number of processes waiting for the value of a

particular semaphore to be equal to zero

Interprocess Communication 4-45

Semaphores

GETALL return the value for all semaphores in a semaphore set
SETALL set all semaphore values in a semaphore set

IPC_STAT return the status information contained in the associated data
structure for the specified semid, and place it in the data
structure pointed to by the buf pointer in the user memory
area; arg.buf is the union member that contains pointer

IPC_SET for the specified semaphore set (semid), set the effective
user/group identification and operation permissions

IPC_RMID remove the specified semaphore set (semid) along with its
associated data structure.

A process must have an effective user identification of OWNER/CREATOR or
superuser to perform an IPC_SET or IPC_RMID control command. Read/alter
permission is required as applicable for the other control commands.

The arg argument is used to pass the system call the appropriate union
member for the control command to be performed. For some of the control
commands, the arg argument is not required and is simply ignored.

B arg.val required: SETVAL

® arg.buf required: IPC_STAT, IPC_SET

W arg.array required: GETALL, SETALL

m arg ignored: GETVAL, GETPID, GETNCNT, GETZCNT, IPC_RMID
The details of this system call are discussed in the following program. If you
need more information on the logic manipulations in this program, read "Using

semget”. It goes into more detail than would be practical to do for every sys-
tem call.

Example Program

Figure 4-8 is a menu-driven program. It allows all possible combinations of
using the semct1 system call to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are
pointed out.

4-46 System Services and Application Packaging Tools

Semaphores

This program begins (lines 5-9) by including the required header files as
specified by the semct1(2) entry in the Programmer’s Reference Manual. Note
that in this program errno is declared as an external variable, and therefore the
<sys/errno.h> header file does not have to be included.

Variable, structure, and union names have been chosen to be as close as possible
to those in the synopsis. Their declarations are self explanatory. These names
make the program more readable and are perfectly legal since they are local to
the program. Those declared for this program and what they are used for are

as follows:

semid_ds

length
uid
gid

mode

retrn

semid

semnum

cmd

used to receive the specified semaphore set identifier's data
structure when an IPC_STAT control command is performed

used to receive the input values from the scanf function
(line 119) when performing a SETALL control command

used as a counter to increment through the union
arg.array when displaying the semaphore values for a
GETALL (lines 98-100) control command, and when initializ-
ing the arg.array when performing a SETALL (lines 117-
121) control command

used as a variable to test for the number of semaphores in a
set against the i counter variable (lines 98, 117)

used to store the IPC_SET value for the user identification
used to store the IPC_SET value for the group identification

used to store the IPC_SET value for the operation permis-
sions

used to store the return value from the system call

used to store and pass the semaphore set identifier to the
system call

used to store and pass the semaphore number to the system
call

used to store the code for the desired control command so
that subsequent processing can be performed on it

®

Interprocess Communication 4-47

Semaphores

choice used to determine which member (uid, gid, mode) for the
IPC_SET control command is to be changed

semvals[] used to store the set of semaphore values when getting
(GETALL) or initializing (SETALL)

arg.val used to pass the system call a value to set, or to store a value
returned from the system call, for a single semaphore (union
member)

arg.buf a pointer passed to the system call which locates the data

structure in the user memory area where the IPC_STAT con-
trol command is to place its return values, or where the
IPC_SET command gets the values to set (union member)

arg.array a pointer passed to the system call which locates the array in
the user memory where the GETALL control command is to
place its return values, or when the SETALL command gets
the values to set (union member)

Note that the semid_ds data structure in this program (line 14) uses the data
structure located in the <sys/sem.h> header file of the same name as a tem-
plate for its declaration.

Note that the semvals array is declared to have 25 elements (0 through 24).
This number corresponds to the maximum number of semaphores allowed per
set (SEMMSL), a system-tunable parameter.

Now that all of the required declarations have been presented for this program,
this is how it works.

First, the program prompts for a valid semaphore set identifier, which is stored
in the semid variable (lines 24-26). This is required for all semctl system
calls.

Then, the code for the desired control command must be entered (lines 17-42),
and the code is stored in the cmd variable. The code is tested to determine the
control command for subsequent processing.

If the GETVAL control command is selected (code 1), a message prompting for a
semaphore number is displayed (lines 48, 49). When it is entered, it is stored in
the semnum variable (line 50). Then, the system call is performed, and the
semaphore value is displayed (lines 51-54). Note that the arg argument is not
required in this case, and the system call will simply ignore it. If the system call

4-48 System Services and Application Packaging Tools

Semaphores

is successful, a message indicates this along with the semaphore set identifier
used (lines 197, 198); if the system call is unsuccessful, an error message is
displayed along with the value of the external errno variable (lines 194, 195).

If the SETVAL control command is selected (code 2), a message prompting for a
semaphore number is displayed (lines 55, 56). When it is entered, it is stored in
the semnum variable (line 57). Next, a message prompts for the value to which
the semaphore is to be set; it is stored as the arg.val member of the union
(lines 58, 59). Then, the system call is performed (lines 60, 62). Depending
upon success or failure, the program returns the same messages as for GETVAL
above.

If the GETPID control command is selected (code 3), the system call is made
immediately since all required arguments are known (lines 63-66), and the PID
of the process performing the last operation is displayed. Note that the arg
argument is not required in this case, and the system call will simply ignore it.
Depending upon success or failure, the program returns the same messages as
for GETVAL above.

If the GETNCNT control command is selected (code 4), a message prompting for
a semaphore number is displayed (lines 67-71). When entered, it is stored in the
semnum variable (line 73). Then, the system call is performed and the number
of processes waiting for the semaphore to become greater than its current value
is displayed (lines 73-76). Note that the arg argument is not required in this
case, and the system call will simply ignore it. Depending upon success or
failure, the program returns the same messages as for GETVAL above.

If the GETZCNT control command is selected (code 5), a message prompting for
a semaphore number is displayed (lines 77-80). When it is entered, it is stored
in the semnum variable (line 81). Then the system call is performed and the
number of processes waiting for the semaphore value to become equal to zero is
displayed (lines 82-85). Depending upon success or failure, the program returns
the same messages as for GETVAL above.

If the GETALL control command is selected (code 6), the program first performs
an IPC_STAT control command to determine the number of semaphores in the
set (lines 87-93). The length variable is set to the number of semaphores in the
set (line 93). The arg.array union member is set to point to the semvals
array where the system call is to store the values of the semaphore set (line 96).
Now, a loop is entered which displays each element of the arg.array from
zero to one less than the value of length (lines 98-104). The semaphores in the

Interprocess Communication 4-49

Semaphores

set are displayed on a single line, separated by a space. Depending upon suc-
cess or failure, the program returns the same messages as for GETVAL above.

If the SETALL control command is selected (code 7), the program first performs
an IPC_STAT control command to determine the number of semaphores in the
set (lines 107-110). The length variable is set to the number of semaphores in
the set (line 113). Next, the program prompts for the values to be set and enters
a loop which takes values from the keyboard and initializes the semvals array
to contain the desired values of the semaphore set (lines 115-121). The loop
puts the first entry into the array position for semaphore number zero and ends
when the semaphore number that is filled in the array equals one less than the
value of length. The arg.array union member is set to point to the semvals
array from which the system call is to obtain the semaphore values. The system
call is then made (lines 122-125). Depending upon success or failure, the pro-
gram returns the same messages as for GETVAL above.

If the IPC_STAT control command is selected (code 8), the system call is per-
formed (line 129), and the status information returned is printed out (lines 130-
141); only the members that can be set are printed out in this program. Note
that if the system call is unsuccessful, the status information of the last success-
ful one is printed out. In addition, an error message is displayed, and the
errno variable is printed out (line 194).

If the IPC_SET control command is selected (code 9), the program gets the
current status information for the semaphore set identifier specified (lines 145-
149). This is necessary because this example program provides for changing
only one member at a time, and the semct1 system call changes all of them.
Also, if an invalid value happened to be stored in the user memory area for one
of these members, it would cause repetitive failures for this control command
until corrected. The next thing the program does is to prompt for a code
corresponding to the member to be changed (lines 150-156). This code is stored
in the choice variable (line 157). Now, depending upon the member picked,
the program prompts for the new value (lines 158-181). The value is placed into
the appropriate member in the user memory area data structure, and the system
call is made (line 184). Depending upon success or failure, the program returns
the same messages as for GETVAL above.

If the IPC_RMID control command (code 10) is selected, the system call is per-
formed (lines 186-188). The semaphore set identifier along with its associated
data structure and semaphore set is removed from the UNIX operating system.
Depending upon success or failure, the program returns the same messages as
for the other control commands.

4-50 System Services and Application Packaging Tools

Semaphores

The example program for the semct1 system call follows. We suggest that you
name the source program file semctl.c and the executable file semct1.

Figure 4-8: semctl System Call Example

(continued on next page)

Interprocess Communication 4-51

Semaphores

Figure 4-8: semct1 System Call Example (continued)

(cdntinued on next page)

4-52 System Services and Application Packaging Tools

Semaphores

Figure 4-8: semctl System Call Example (continued)

'('éontlnued on next page)

Interprocess Communication | 4-53

Semaphores

Figure 4-8: semctl System Call Example (continued)

(continued on next page)

4-54 System Services and Application Packaging Tools

Semaphores

Figure 4-8: semctl System Call Example (continued)

Interprocess Communication 4-55

Semaphores

Operations on Semaphores

This section describes how to use the semop system call. The accompanying
program illustrates its use.
Using semop

The synopsis found in the semop(2) entry in the Programmer’s Reference Manual
is as follows:

The semop system call requires three arguments to be passed to it and returns
an integer value which will be zero for successful completion or -1 otherwise.

The semid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the semget system call.

The sops argument points to an array of structures in the user memory area
that contains the following for each semaphore to be changed:

m the semaphore number (sem_num)

m the operation to be performed (sem_op)

m the control flags (sem_£f1g)
The *sops declaration means that either an array name (which is the address of
the first element of the array) or a pointer to the array can be used. sembuf is

the tag name of the data structure used as the template for the structure
members in the array; it is located in the <sys/sem.h> header file.

4-56 System Services and Application Packaging Tools

Semaphores

The nsops argument specifies the length of the array (the number of structures
in the array). The maximum size of this array is determined by the SEMOPM
system-tunable parameter. Therefore, a maximum of SEMOPM operations can be
performed for each semop system call.

The semaphore number (sem_num) determines the particular semaphore within
the set on which the operation is to be performed.

The operation to be performed is determined by the following:

m if sem_op is positive, the semaphore value is incremented by the value of
sem_op

m if sem_op is negative, the semaphore value is decremented by the abso-
lute value of sem_op

m if sem_op is zero, the semaphore value is tested for equality to zero

The following operation commands (flags) can be used:

® IPC_NOWAIT—this operation command can be set for any operations in
the array. The system call will return unsuccessfully without changing
any semaphore values at all if any operation for which IPC_NOWAIT is set
cannot be performed successfully. The system call will be unsuccessful
when trying to decrement a semaphore more than its current value, or
when testing for a semaphore to be equal to zero when it is not.

B SEM_UNDO—this operation command is used to tell the system to undo
the process’s semaphore changes automatically when the process exits; it
allows processes to avoid deadlock problems. To implement this feature,
the system maintains a table with an entry for every process in the sys-
tem. Each entry points to a set of undo structures, one for each semaphore
used by the process. The system records the net change.

Example Program

Figure 4-9 is a menu-driven program. It allows all possible combinations of
using the semop system call to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are
pointed out.

Interprocess Communication 4-57

Semaphores

This program begins (lines 5-9) by including the required header files as
specified by the shmop(2) entry in the Programmer’s Reference Manual. Note that
in this program errno is declared as an external variable; therefore, the
<sys/errno.h> header file does not have to be included.

Variable and structure names have been chosen to be as close as possible to
those in the synopsis. Their declarations are self explanatory. These names
make the program more readable and are perfectly legal since the declarations
are local to the program. The variables declared for this program and what
they are used for are as follows: .

sembuf[10] used as an array buffer (line 14) to contain a maximum of ten
sembuf type structures; ten is the standard value of the tun-
able parameter SEMOPM, the maximum number of operations
on a semaphore set for each semop system call

sops used as a pointer (line 14) to the sembuf array for the sys-
tem call and for accessing the structure members within the
array

string[8] used as a character buffer to hold a number entered by the
user

rtrn used to store the return value from the system call

flags used to store the code of the IPC_NOWAIT or SEM_UNDO

flags for the semop system call (line 59)

sem_num used to store the semaphore number entered by the user for
each semaphore operation in the array

i used as a counter (line 31) for initializing the structure
members in the array, and used to print out each structure in
the array (line 78)

semid used to store the desired semaphore set identifier for the sys-
tem call
nsops used to specify the number of semaphore operations for the

system call; must be less than or equal to SEMOPM

First, the program prompts for a semaphore set identifier that the system call is
to perform operations on (lines 18-21). semid is stored in the semid variable
(line 22).

4-58 System Services and Application Packaging Tools

Semaphores

A message is displayed requesting the number of operations to be performed on
this set (lines 24-26). The number of operations is stored in the nsops variable
(line 27).

Next, a loop is entered to initialize the array of structures (lines 29-76). The
semaphore number, operation, and operation command (flags) are entered for
each structure in the array. The number of structures equals the number of
semaphore operations (nsops) to be performed for the system call, so nsops is
tested against the i counter for loop control. Note that sops is used as a
pointer to each element (structure) in the array, and sops is incremented just
like i. sops is then used to point to each member in the structure for setting
them.

After the array is initialized, all of its elements are printed out for feedback
(lines 77-84).

The sops pointer is set to the address of the array (lines 85, 86). sembuf could
be used directly, if desired, instead of sops in the system call.

The system call is made (line 88), and depending upon success or failure, a
corresponding message is displayed. The results of the operation(s) can be
viewed by using the semct1 GETALL control command.

The example program for the semop system call follows. We suggest that you
name the source program file semop.c and the executable file semop.

Interprocess Communication 4-59

Semaphores

Figure 4-9: semop System Call Example

(continued on next page)

4-60 System Services and Application Packaging Tools

Semaphores

Figure 4-9: semop System Call Example (continued)

(continued on next page)

Interprocess Communication 4-61

Semaphores

Figure 4-9: semop System Call Example (continued)

4-62 System Services and Application Packaging Tools

Shared Memory

The shared memory type of IPC allows two or more processes (executing pro-
grams) to share memory and, consequently, the data contained there. This is
done by allowing processes to set up access to a common virtual memory
address space. This sharing occurs on a segment basis, which is memory
management hardware-dependent.

This sharing of memory provides the fastest means of exchanging data between
processes. However, processes that reference a shared memory segment must
reside on one processor. Consequently, processes running on different proces-
sors (such as in an Remote File Sharing (RFS) network or a multiprocessing
environment) may not be able to use shared memory segments.

A process initially creates a shared memory segment facility using the shmget
system call. Upon creation, this process sets the overall operation permissions
for the shared memory segment facility, sets its size in bytes, and can specify
that the shared memory segment is for reference only (read-only) upon attach-
ment. If the memory segment is not specified to be for reference only, all other
processes with appropriate operation permissions can read from or write to the

memory segment.

shmat (shared memory attach) and shmdt (shared memory detach) can be per-
formed on a shared memory segment.

shmat allows processes to associate themselves with the shared memory seg-
ment if they have permission. They can then read or write as allowed.

shmdt allows processes to disassociate themselves from a shared memory seg-
ment. Therefore, they lose the ability to read from or write to the shared
memory segment.

The original owner/creator of a shared memory segment can relinquish owner-
ship to another process using the shmct1 system call. However, the creating
process remains the creator until the facility is removed or the system is reini-
tialized. Other processes with permission can perform other functions on the
shared memory segment using the shmctl system call.

Interprocess Communication 4-63

Shared Memory

System calls (documented in the Programmer’s Reference Manual) make these
shared memory capabilities available to processes. The calling process passes
arguments to a system call, and the system call either successfully or unsuccess-
fully performs its function. If the system call is successful, it performs its func-
tion and returns the appropriate information. Otherwise, a known error code
(1) is returned to the process, and the external variable errno is set accord-

ingly.

Using Shared Memory

Sharing memory between processes occurs on a virtual segment basis. There is
only one copy of each individual shared memory segment existing in the UNIX
operating system at any point in time.

Before sharing of memory can be realized, a uniquely identified shared memory
segment and data structure must be created. The unique identifier created is
called the shared memory identifier (shmid); it is used to identify or refer to the
associated data structure. The data structure includes the following for each
shared memory segment:

m operation permissions

segment size

segment descriptor (for internal system use only)
PID performing last operation

PID of creator

current number of processes attached

last attach time

last detach time

last change time
The C programming language data structure definition for the shared memory

segment data structure is located in the <sys/shm.h> header file. It is as fol-
lows:

4-64 System Services and Application Packaging Tools

Shared Memory

Note that the shm_perm member of this structure uses ipc_perm as a tem-
plate.

The ipc_perm data structure is the same for all IPC facilities; is it located in the
<sys/ipc.h> header file and shown in Figure 4-1.

The shmget system call performs two tasks:

m it gets a new shared memory identifier and creates an associated shared
memory segment data structure for it

m it returns an existing shared mémory identifier that already has an associ-
ated shared memory segment data structure

The task performed is determined by the value of the key argument passed to
the shmget system call. For the first task, if the key is not already in use for
an existing shared memory identifier and the IPC_CREAT flag is set in shmflg,
a new identifier is returned with an associated shared memory segment data
structure created for it provided no system-tunable parameters would be
exceeded.

Interprocess Communication 4-65

Shared Memory

There is also a provision for specifying a key of value zero which is known as
the private key (IPC_PRIVATE); when specified, a new shmid is always
returned with an associated shared memory segment data structure created for
it unless a system-tunable parameter would be exceeded. The ipcs command
will show the key field for the shmid as all zeros.

For the second task, if a shmid exists for the key specified, the value of the
existing shmid is returned. If it is not desired to have an existing shmid
returned, a control command (IPC_EXCL) can be specified (set) in the shmflg

argument passed to the system call. "Using shmget" discusses how to use this
system call. ,

When performing the first task, the process that calls shmget becomes the
owner/creator, and the associated data structure is initialized accordingly.
Remember, ownership can be changed, but the creating process always remains
the creator (see "Controlling Shared Memory"). The creator of the shared
memory segment also determines the initial operation permissions for it.

Once a uniquely identified shared memory segment data structure is created,

shmop (shared memory segment operations) and shmctl (shared memory con-
trol) can be used.

Shared memory segment operations consist of attaching and detaching shared
memory segments. shmat and shmdt are provided for each of these opera-
tions (see "Operations for Shared Memory" for details on these system calls).

The shmct1 system call permits you to control the shared memory facility in
the following ways:

m by retrieving the data structure associated with a shared memory segment
(IPC_STAT)

® by changing operation permissions for a shared memory segment
(IPC_SET)

® by removing a particular shared memory segment from the UNIX operat-
ing system along with its associated shared memory segment data struc-
ture (IPC_RMID)

® by locking a shared memory segment in memory (SHM_LOCK)
® by unlocking a shared memory segment (SHM_UNLOCK)

4-66 System Services and Application Packaging Tools

Shared Memory

See "Controlling Shared Memory" for details of the shmct1 system call.

Getting Shared Memory Segments

This section describes how to use the shmget system call. The accompanying
program illustrates its use.
Using shmget

The synopsis found in the shmget(2) entry in the Programmer’s Reference Manual
is as follows:

All of these include files are located in the /usr/include/sys directory of the
UNIX operating system. The following line in the synopsis:

int shmget (key, size, shmflg)

informs you that shmget is a function with three formal arguments that returns
an integer-type value. The next two lines:

key t key;
int size, shmflg;

declare the types of the formal arguments. key_t is defined by a typedef in
the <sys/types.h> header file to be an integer.

The integer returned from this function (upon successful completion) is the
shared memory identifier (shmid) that was discussed earlier.

Interprocess Communication 4-67

Shared Memory

As declared, the process calling the shmget system call must supply three argu-
ments to be passed to the formal key, size, and shmflg arguments.

A new shmid with an associated shared memory data structure is provided if
either

m key is equal to IPC_PRIVATE,
or

m key is a unique integer and shmflg ANDed with IPC_CREAT is "true"

(not zero).

The value passed to the shmflg argument must be an integer-type value and
will specify the following;:

m operations permissions

m control fields (commands)
Access permissions determine the read /write attributes and modes determine
the user/group/other attributes of the shmflg argument. They are collectively

referred to as "operation permissions." Figure 4-10 reflects the numeric values
(expressed in octal notation) for the valid operation permissions codes.

Figure 4-10: Operation Permissions Codes

Operation Permissions | Octal Value
Read by User 00400
Write by User 00200
Read by Group 00040
Write by Group 00020
Read by Others 00004
Write by Others 00002

A specific octal value is derived by adding or bitwise ORing the octal values for
the operation permissions desired. That is, if read by user and read/write by
others is desired, the code value would be 00406 (00400 plus 00006). There are
constants located in the <sys/shm.h> header file which can be used for the
user (OWNER). They are:

4-68 System Services and Application Packaging Tools

Shared Memory

SHM_R 0400
SHM_W 0200

Control flags are predefined constants (represented by all uppercase letters).
The flags that apply to the shmget system call are IPC_CREAT and IPC_EXCL
and are defined in the <sys/ipc.h> header file.

The value for shmflg is, therefore, a combination of operation permissions and
control commands. After determining the value for the operation permissions
as previously described, the desired flag(s) can be specified. This is accom-
plished by adding or bitwise ORing (|) them with the operation permissions;
the bit positions and values for the control commands in relation to those of the
operation permissions make this possible.

The shmflg value can easily be set by using the names of the flags in conjunc-
tion with the octal operation permissions value:

shmid = shmget (key, size, (IPC_CREAT | 0400)):
shmid = shmget (key, size, (IPC_CREAT | IPC_EXCL | 0400));

As specified by the shmget(2) entry in the Programmer’s Reference Manual, suc-
cess or failure of this system call depends upon the argument values for key,
size, and shmflg, and system-tunable parameters. The system call will
attempt to return a new shmid if one of the following conditions is true:

m key is equal to IPC_PRIVATE .
'® key does not already have a shmid associated with it and (shmflg &
IPC_CREAT) is "true" (not zero).
The key argument can be set to IPC_PRIVATE like this:
shmid = shmget (IPC_PRIVATE, size, shmflg);

The SHMMNI system-tunable parameter determines the maximum number of
unique shared memory segments (shmids) that may be in use at any given
time. If the maximum number of shared memory segments is already in use, an
attempt to create an additional segment will fail.

IPC_EXCL is another control command used in conjunction with IPC_CREAT.

It will cause the system call to retrieve an error if a shared memory identifier
exists for the specified key provided. This is necessary to prevent the process

Interprocess Communication 4-69

Shared Memory

from thinking that it has received a new (unique) shmid when it has not. In
other words, when both PC_CREAT and IPC_EXCL are specified, a unique
shared memory identifier is returned if the system call is successful. Any value
for shmflg returns a new identifier if the key equals zero (IPC_PRIVATE) and
no system-tunable parameters are exceeded.

The system call will fail if the value for the size argument is less than SHMMIN
or greater than SHMMAX. These tunable parameters specify the minimum and
maximum shared memory segment sizes.

Refer to the shmget(2) manual page in the Programmer’s Reference Manual for
specific associated data structure initialization for successful completion. The
specific failure conditions and their error names are contained there also.

Example Program

Figure 4-11 is a menu-driven program. It allows all possible combinations of
using the shmget system call to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are
pointed out.

This program begins (lines 4-7) by including the required header files as
specified by the shmget(2) entry in the Programmer’s Reference Manual. Note
that the <sys/errno.h> header file is included as opposed to declaring errno
as an external variable; either method will work.

Variable names have been chosen to be as close as possible to those in the
synopsis for the system call. Their declarations are self explanatory. These
names make the program more readable and are perfectly legal since they are
local to the program. The variables declared for this program and what they
are used for are as follows:

key used to pass the value for the desired key

opperm used to store the desired operation permissions
flags used to store the desired control commands (flags)
shmid used for returning the message queue identification

number for a successful system call or the error code (1)
for an unsuccessful one

4-70 System Services and Application Packaging Tools

Shared Memory

size used to specify the shared memory segment size

opperm_flags used to store the combination from the logical ORing of
the opperm and flags variables; it is then used in the
system call to pass the shmflg argument

The program begins by prompting for a hexadecimal key, an octal operation
permissions code, and finally for the control command combinations (flags)
which are selected from a menu (lines 14-31). All possible combinations are
allowed even though they might not be viable. This allows observing the errors
for illegal combinations.

Next, the menu selection for the flags is combined with the operation permis-
sions; the result is stored in the opperm_flags variable (lines 35-50).

A display then prompts for the size of the shared memory segment; it is stored
in the size variable (lines 51-54).

The system call is made next; the result is stored in the shmid variable (line 56).

Since the shmid variable now contains a valid message queue identifier or the
error code (-1), it is tested to see if an error occurred (line 58). If shmid equals
-1, a message indicates that an error resulted and the external errno variable is
displayed (line 60).

If no error occurred, the returned shared memory segment identifier is
displayed (line 64).

The example program for the shmget system call follows. We suggest that you
name the source program file shmget . ¢ and the executable file shmget.

Interprocess Communication 4-71

Shared Memory

Figure 4-11: shmget System Call Example

(continued on next page)

4-72 System Services and Application Packaging Tools

Shared Memory

Figure 4-11: shmget System Call Example (continued)

Controlling Shared Memory

This section describes how to use the shmctl system call. The accompanying
program illustrates its use.

Interprocess Communication 4-73

Shared Memory

Using shmctl

The synopsis found in the shmct 1(2) entry in the Programmer’s Reference Manual
is as follows:

The shmctl system call requires three arguments to be passed to it. It returns
an integer value which will be zero for successful completion or -1 otherwise.

The shmid variable must be a valid, non-negative, integer value. In other
words, it must have already been created by using the shmget system call.

The cmd argument can be replaced by one of following values:

IPC_STAT return the status information contained in the associated data
structure for the specified shmid and place it in the data
structure pointed to by the buf pointer in the user memory
area

IPC_SET for the specified shmid, set the effective user and group
identification, and operation permissions

IPC_RMID remove the specified shmid with its associated shared
memory segment data structure

SHM_LOCK lock the specified shared memory segment in memory; must
be superuser to perform this operation

SHM_LOCK lock the shared memory segment from memory; must be
superuser to perform this operation

A process must have an effective user identification of OWNER/CREATOR or
superuser to perform an IPC_SET or IPC_RMID control command. Only the
superuser can perform a SHM_LOCK or SHM_UNLOCK control command. A pro-
cess must have read permission to perform the IPC_STAT control command.

4-74 System Services and Application Packaging Tools

Shared Memory

The details of this system call are discussed in the example program. If you
need more information on the logic manipulations in this program, read "Using
shmget". It goes into more detail than what would be practical for every sys-
tem call.

Example Program

Figure 4-12 is a menu-driven program. It allows all possible combinations of
using the shmct1 system call to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are
pointed out.

This program begins (lines 5-9) by including the required header files as
specified by the shmct1(2) entry in the Programmer’s Reference Manual. Note
that in this program errno is declared as an external variable, and therefore,
the <sys/errno.h> header file does not have to be included.

Variable and structure names have been chosen to be as close as possible to
those in the synopsis for the system call. Their declarations are self explanatory.
These names make the program more readable and are perfectly legal since they
are local to the program. The variables declared for this program and what
they are used for are as follows:

uid used to store the IPC_SET value for the user identification

gid used to store the IPC_SET value for the group identification

mode used to store the IPC_SET value for the operation permis-
sions

rtrn used to store the return integer value from the system call

shmid used to store and pass the shared memory segment identifier

to the system call

command used to store the code for the desired control command so
that subsequent processing can be performed on it

choice used to determine which member for the IPC_SET control
command is to be changed

Interprocess Communication ‘ 4-75

Shared Memory

shmid_ds used to receive the specified shared memory segment
identifier's data structure when an IPC_STAT control com-
mand is performed

buf a pointer passed to the system call which locates the data
structure in the user memory area where the IPC_STAT con-
trol command is to place its return values or where the
IPC_SET command gets the values to set.

Note that the shmid_ds data structure in this program (line 16) uses the data
structure of the same name located in the <sys/shm.h> header file as a tem-
plate for its declaration.

The next important thing to observe is that although the buf pointer is declared
to be a pointer to a data structure of the shmid_ds type, it must also be initial-
ized to contain the address of the user memory area data structure (line 17).

Now that all of the required declarations have been explained for this program,
this is how it works.

First, the program prompts for a valid shared memory segment identifier which
is stored in the shmid variable (lines 18-20). This is required for every shmctl
system call.

Then, the code for the desired control command must be entered (lines 21-29); it
is stored in the command variable. The code is tested to determine the control
command for subsequent processing.

If the IPC_STAT control command is selected (code 1), the system call is per-
formed (lines 39, 40) and the status information returned is printed out (lines
41-71). Note that if the system call is unsuccessful (line 139), the status informa-
tion of the last successful call is printed out. In addition, an error message is
displayed and the errno variable is printed out (lines 141). If the system call is
successful, a message indicates this along with the shared memory segment
identifier used (lines 143-147).

If the IPC_SET control command is selected (code 2), the first thing done is to
get the current status information for the shared memory identifier specified
(lines 88-90). This is necessary because this example program provides for
changing only one member at a time, and the system call changes all of them.
Also, if an invalid value happened to be stored in the user memory area for one
of these members, it would cause repetitive failures for this control command
until corrected. The next thing the program does is to prompt for a code

4-76 System Services and Application Packaging Tools

Shared Memory

corresponding to the member to be changed (lines 91-96). This code is stored in
the choice variable (line 97). Now, depending upon the member picked, the
program prompts for the new value (lines 98-120). The value is placed in the
appropriate member in the user memory area data structure, and the system call
is made (lines 121-128). Depending upon success or failure, the program returns
the same messages as for IPC_STAT above.

If the IPC_RMID control command (code 3) is selected, the system call is per-
formed (lines 125-128), and the shmid along with its associated message queue
and data structure are removed from the UNIX operating system. Note that the
buf pointer is ignored in performing this control command and its value can be
zero or NULL. Depending upon the success or failure, the program returns the
same messages as for the other control commands.

If the SHM_LOCK control command (code 4) is selected, the system call is per-
formed (lines 130,131). Depending upon the success or failure, the program
returns the same messages as for the other control commands.

If the SHM_UNLOCK control command (code 5) is selected, the system call is per-
formed (lines 133-135). Depending upon the success or failure, the program
returns the same messages as for the other control commands.

The example program for the shmctl system call follows. We suggest that you
name the source program file shmctl.c and the executable file shmct1.

Interprocess Communication 4-77

Shared Memory

Figure 4-12: shmctl System Call Example

(continued on next page)

4-78 System Services and Application Packaging Tools

Shared Memory

Figure 4-12: shmctl System Call Example (continued)

(cohtinued”on next pageA)'

Interprocess Communication 4-79

Shared Memory

Figure 4-12: shmct1 System Call Example (continued)

(continued on next page)

4-80 System Services and Application Packaging Tools

Shared Memory

Figure 4-12: shmctl System Call Example (continued)

Operations for Shared Memory

This section describes how to use the shmat and shmdt system calls. The
accompanying program illustrates their use.

Using shmop

The synopsis found in the shmop(2) entry in the Programmer’s Reference Manual
is as follows:

Interprocess Communication , 4-81

Shared Memory

Attaching a Shared Memory Segment

The shmat system call requires three arguments to be passed to it. It returns a
character pointer value. Upon successful completion, this value will be the
address in memory where the process is attached to the shared memory seg-
ment and when unsuccessful the value will be —1.

The shmid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the shmget system call.

The shmaddr argument can be zero or user supplied when passed to the
shmat system call. If it is zero, the UNIX operating system picks the address
where the shared memory segment will be attached. If it is user supplied, the
address must be a valid address that the UNIX operating system would pick.
The following illustrates some typical address ranges.

0xc00c0000
0xc00e0000
0xc0100000
0xc0120000

Note that these addresses are in chunks of 20,000 hexadecimal. It would be
wise to let the operating system pick addresses so as to improve portability.

The shmflg argument is used to pass the SHM_RND and SHM_RDONLY flags to
the shmat system call.

4-82 System Services and Application Packaging Tools

Shared Memory

Detaching Shared Memory Segments

The shmdt system call requires one argument to be passed to it. It returns an
integer value which will be zero for successful completion or -1 otherwise.

Further details on shmat and shmdt are discussed in the example program. If
you need more information on the logic manipulations in this program, read
"Using shmget". It goes into more detail than would be practical to do for
every system call.

Example Program

Figure 4-13 is a menu-driven program. It allows all possible combinations of
using the shmat and shmdt system calls to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are
pointed out.

This program begins (lines 5-9) by including the required header files as
specified by the shmop(2) entry in the Programmer’s Reference Manual. Note that
in this program errno is declared as an external variable; therefore, the
<sys/errno.h> header file does not have to be included.

Variable and structure names have been chosen to be as close as possible to
those in the synopsis. Their declarations are self explanatory. These names
make the program more readable and are perfectly legal since they are local to
the program. The variables declared for this program and what they are used
for are as follows:

addr used to store the address of the shared memory segment for
' the shmat and shmdt system calls and to receive the return
value from the shmat system call

laddr used to store the desired attach/detach address entered by
the user
flags used to store the codes of the SHM_RND or SHM RDONLY flags

for the shmat system call

i used as a loop counter for attaching and detaching

Interprocess Communication 4-83

Shared Memory

attach used to store the desired number of attach operations

shmid used to store and pass the desired shared memory segment
identifier

shmflg used to pass the value of flags to the shmat system call

retrn used to store the return values from the shmdt system call

detach used to store the desired number of detach operations

This example program combines both the shmat and shmdt system calls. The
program prompts for the number of attachments and enters a loop until they
are done for the specified shared memory identifiers. Then, the program
prompts for the number of detachments to be performed and enters a loop until
they are done for the specified shared memory segment addresses.

shmat

The program prompts for the number of attachments to be performed, and the
value is stored at the address of the attach variable (lines 19-23).

A loop is entered using the attach variable and the i counter (lines 23-72) to
perform the specified number of attachments.

In this loop, the program prompts for a shared memory segment identifier (lines
26-29); it is stored in the shmid variable (line 30). Next, the program prompts
for the address where the segment is to be attached (lines 32-36); it is stored in
the laddr variable (line 37) and converted to a pointer (line 39). Then, the pro-
gram prompts for the desired flags to be used for the attachment (lines 40-47),
and the code representing the flags is stored in the flags variable (line 48).
The flags variable is tested to determine the code to be stored for the shmflg
variable used to pass them to the shmat system call (lines 49-60). The system
call is executed (line 63). If successful, a message stating so is displayed along
with the attach address (lines 68-70). If unsuccessful, a message stating so is
displayed and the error code is displayed (line 65). The loop then continues
until it finishes.

shmdt

After the attach loop completes, the program prompts for the number of detach
operations to be performed (lines 73-77) and the value is stored in the detach
variable (line 76).

4-84 System Services and Application Packaging Tools

Shared Memory

A loop is entered using the detach variable and the i counter (lines 80-98) to
perform the specified number of detachments.

In this loop, the program prompts for the address of the shared memory seg-
ment to be detached (lines 81-85); it is stored in the laddr variable (line 86) and
converted to a pointer (line 88). Then, the shmdt system call is performed (line
89). If successful, a message stating so is displayed along with the address that
the segment was detached from (lines 95, 96). If unsuccessful, the error number
is displayed (line 92). The loop continues until it finishes.

The example program for the shmop system calls follows. We suggest that you
name the source program file shmop.c and the executable file shmop.

Figure 4-13: shmop System Call Example

(continued on next page)

Interprocess Communication 4-85

Shared Memory

Figure 4-13: shmop System Call Example (continued)

(continued on next page)

4-86 System Services and Application Packaging Tools

Shared Memory

Figure 4-13: shmop System Call Example (continued)

Interprocess Communication 4-87

PROCESS SCHEDULER

H31NA3HOS SS300Hd

5 Process Scheduler

Introduction 5-1
Overview of the Process Scheduler 5-3
Time-Sharing Class 5-4
System Class 55
Real-Time Class 55
Commands and Function Calls 5-6
The priocntl command 5-9
The priocntl system call 5-13
s PC_GETCID, PC_GETCLINFO 5-15
s PC_GETPARMS, PC_SETPARMS 5-19
The priocntiset system call 5-25
Interaction with Other Functions 5-28
Kernel Processes 5-28
fork, exec 5-28
nice 5-28
init 5-29
Performance 5-30
Process State Transition 5-30
Software Latencies 5-33
Primary Memory for Real-Time U-Blocks 5-34

Table of Contents i

Introduction

The UNIX system scheduler determines when processes run. It maintains pro-
cess priorities based on configuration parameters, process behavior, and user
requests; it uses these priorities to assign processes to the CPU.

System V Release 4 gives users absolute control over the order in which certain
processes run and the amount of time each process may use the CPU before
another process gets a chance.

By default, the Release 4 scheduler uses a time-sharing policy like the policy
used in previous releases. A time-sharing policy adjusts process priorities
dynamically in an attempt to provide good response time to interactive
processes and good throughput to processes that use a lot of CPU time.

The System V Release 4 scheduler offers a real-time scheduling policy as well as
a time-sharing policy. Real-time scheduling allows users to set fixed priorities
on a per-process basis. The highest-priority real-time user process always gets
the CPU as soon as it is runnable, even if system processes are runnable. An
application can therefore specify the exact order in which processes run. An
application may also be written so that its real-time processes have a guaranteed
response time from the system.

For most UNIX environments, the default scheduler configuration works well
and no real-time processes are needed: administrators should not change
configuration parameters and users should not change scheduler properties of
their processes. However, when the requirements for an application include
strict timing constraints, real-time processes sometimes provide the only way to
satisfy those constraints..

Real-time processes used carelessly can have a dramatic negative effect on
the performance of time-sharing processes.

I

This chapter is addressed to programmers who need more control over order of
process execution than they get using default scheduler parameters.

Because changes in scheduler administration can affect scheduler behavior, pro-
grammers may also need to know something about scheduler administration.
For administrative information on the scheduler, see the System Administrator’s
Guide. There are also a few reference manual entries with information on
scheduler administration:

Process Scheduler 5-1

Introduction

m dispadmin(1M) tells how to change scheduler configuration in a running

system.

m ts_dptbl(4) and rt_dptbl(4) describe the time-sharing and real-time

parameter tables that are used to configure the scheduler.

The rest of this chapter is organized as follows:

5-2

m The ““Overview of the Process Scheduler” tells what the scheduler does

and how it does it. It also introduces scheduler classes.

The “Commands and Function Calls” section describes and gives exam-
ples of the priocnt1(1) command and the priocnt1(2) and

priocntlset (2) system calls, the user interface to scheduler services. The
priocntl functions allow you to retrieve scheduler configuration infor-
mation and to get or set scheduler parameters for a process or a set of
processes.

“Interaction with Other Functions”” describes the interactions between the
scheduler and related functions.

The “Performance” section discusses scheduler latencies that some appli-
cations must be aware of and mentions some considerations other than
the scheduler that application designers must take into account to ensure
that their requirements are met.

System Services and Application Packaging Tools

Overview of the Process Scheduler

The following figure shows how the System V Release 4 process scheduler

works:

Figure 5-1: The System V Release 4 Process Scheduler

Global
Priority

Highest
\

Lowest

First

Last

Scheduling Class-Specific
Order

Priorities

Real-Time
Priorities

System
Priorities

Time-Sharing
Priorities

Scheduler
Classes

Process

Queues

O

—o

Real-Time
Processes

—0—0

O
O

—O0

System
Processes

—0—0

O_
O_

O

——O—0—0

Time-Sharing
Processes

—0—0

When a process is created, it inherits its scheduler parameters, including

scheduler class and a priority within that class. A process changes class only as
a result of a user request. The system manages the priority of a process based
on user requests and a policy associated with the scheduler class of the process.

In the default configuration, the initialization process belongs to the time-
sharing class. Because processes inherit their scheduler parameters, all user

login shells begin as time-sharing processes in the default configuration.

Process Scheduler

Overview of the Process Scheduler

The scheduler converts class-specific priorities into global priorities. The global
priority of a process determines when it runs—the scheduler always runs the
runnable process with highest global priority. Numerically higher priorities run
first. Once the scheduler assigns a process to the CPU, the process runs until it
uses up its time slice, sleeps, or is preempted by a higher-priority process.
Processes with the same priority run round-robin.

Administrators specify default time slices in the configuration tables, but users
may assign per-process time slices to real-time processes.

You can display the global priority of a process with the —c1 options of the
ps(1) command. You can display configuration information about class-specific
priorities with the priocnt1(1) command and the dispadmin(1M) command.

By default, all real-time processes have higher priorities than any kernel process,
and all kernel processes have higher priorities than any time-sharing process.

As long as there is a runnable real-time process, no kernel process and no
time-sharing process runs.

I

The following sections describe the scheduling policies of the three default
classes.

Time-Sharing Class

The goal of the time-sharing policy is to provide good response time to interac-
tive processes and good throughput to CPU-bound processes. The scheduler
switches CPU allocation frequently enough to provide good response time, but
not so frequently that it spends too much time doing the switching. Time slices
are typically on the order of a few hundred milliseconds.

The time-sharing policy changes priorities dynamically and assigns time slices of
different lengths. The scheduler raises the priority of a process that sleeps after
only a little CPU use (a process sleeps, for example, when it starts an I/O opera-
tion such as a terminal read or a disk read); frequent sleeps are characteristic of
interactive tasks such as editing and running simple shell commands. On the
other hand, the time-sharing policy lowers the priority of a process that uses the
CPU for long periods without sleeping.

5-4 System Services and Application Packaging Tools

Overview of the Process Scheduler

The default time-sharing policy gives larger time slices to processes with lower
priorities. A process with a low priority is likely to be CPU-bound. Other
processes get the CPU first, but when a low-priority process finally gets the CPU,
it gets a bigger chunk of time. If a higher-priority process becomes runnable
during a time slice, however, it preempts the running process.

The scheduler manages time-sharing processes using configurable parameters in
the time-sharing parameter table ts_dptbl. This table contains information
specific to the time-sharing class.

System Class

The system class uses a fixed-priority policy to run kernel processes such as
servers and housekeeping processes like the paging demon. The system class is
reserved for use by the kernel; users may neither add nor remove a process
from the system class. Priorities for system class processes are set up in the ker-
nel code for those processes; once established, the priorities of system processes
do not change. (User processes running in kernel mode are not in the system
class.)

Real-Time Class

The real-time class uses a fixed-priority scheduling policy so that critical
processes can run in predetermined order. Real-time priorities never change
except when a user requests a change. Contrast this fixed-priority policy with
the time-sharing policy, in which the system changes priorities in order to pro-
vide good interactive response time.

Privileged users can use the priocntl command or the priocntl system call to
assign real-time priorities.

The scheduler manages real-time processes using configurable parameters in the
real-time parameter table rt_dptbl. This table contains information specific to
the real-time class.

Process Scheduler 5-5

Commands and Function Calls

Here is a programmer’s view of default process priorities:

Figure 5-2: Process Priorities (Programmer View)

‘Global Scheduling Class-Specific Scheduler

Priority Order Priorities Classes
Hi .
17hmt Fl}l'St RT max O
) Real-Time
. Class
0 O
O
' System
. Class
O
O
+ TS max .
0 . | Time-Sharing
— TS max . Class
Lowest Last O

From a user or programmer’s point of view, a process priority has meaning
only in the context of a scheduler class. You specify a process priority by speci-
fying a class and a class-specific priority value. The class and class-specific
value are mapped by the system into a global priority that the system uses to
schedule processes.

B Real-time priorities run from zero to a configuration-dependent max-
imum. The system maps them directly into global priorities. They never
change except when a user changes them.

5-6 System Services and Application Packaging Tools

Commands and Function Calls

m System priorities are controlled entirely in the kernel. Users cannot affect
them.

m Time-sharing priorities have a user-controlled component (the ““user prior-
ity’’) and a component controlled by the system. The system does not
change the user priority except as the result of a user request. The system
changes the system-controlled component dynamically on a per-process
basis in order to provide good overall system performance; users cannot
affect the system-controlled component. The scheduler combines these
two components to get the process global priority.

The user priority runs from the negative of a configuration-dependent
maximum to the positive of that maximum. A process inherits its user
priority. Zero is the default initial user priority.

The “user priority limit” is the configuration-dependent maximum value
of the user priority. You may set a user priority to any value below the

user priority limit. With appropriate permission, you may raise the user
priority limit. Zero is the default user priority limit.

You may lower the user priority of a process to give the process reduced
access to the CPU or, with the appropriate permission, raise the user prior-
ity to get better service. Because you cannot set the user priority above
the user priority limit, you must raise the user priority limit before you
raise the user priority if both have their default values of zero.

An administrator configures the maximum user priority independent of
global time-sharing priorities. In the default configuration, for example, a
user may set a user priority only in the range from -20 to +20, but 60
time-sharing global priorities are configured.

A system administrator’s view of priorities is different from that of a user or
programmer. When configuring scheduler classes, an administrator deals
directly with global priorities. The system maps priorities supplied by users
into these global priorities. See the System Administrator’s Guide.

The ps —cel command reports global priorities for all active processes. The
priocntl command reports the class-specific priorities that users and program-
mers use.

Process Scheduler 5-7

Commands and Function Calls

Global process priorities and user-supplied priorities are in ascending order:
numerically higher priorities run first.

l

The priocnt1(1) command and the priocnt1(2) and priocntlset(2) system
calls set or retrieve scheduler parameters for processes. The basic idea for set-
ting priorities is the same for all three functions:

m Specify the target processes.

® Specify the scheduler parameters you want for those processes.

m Do the command or system call to set the parameters for the processes.
You specify the target processes using an ID type and an ID. The ID type tells

how to interpret the ID. [This concept of a set of processes applies to signals as
well as to the scheduler; see sigsend(2).] The following table lists the valid ID

types that you may specify.

priocntl ID types

process ID

parent process ID
process group ID
session ID

class ID

effective user ID
effective group ID
all processes

These IDs are basic properties of UNIX processes. [See intro(2).] The class ID
refers to the scheduler class of the process. priocntl works only for the time-
sharing and the real-time classes, not for the system class. Processes in the sys-
tem class have fixed priorities assigned when they are started by the kernel.

5-8 System Services and Application Packaging Tools

Commands and Function Calls

The priocntl command

The priocntl command comes in four forms:
m priocntl -1 displays configuration information.
®m priocntl —d displays the scheduler parameters of processes.
m priocntl -s sets the scheduler parameters of processes.
® priocntl —e executes a command with the specified scheduler parame-

ters.

1. Here is the output of the -1 option for the default configuration.

2. The ~d option displays the scheduler parameters of a process or a set of
processes. The syntax for this option is

priocntl -d -i idtype idlist

idtype tells what kind of IDs are in idlist. idlist is a list of IDs separated by white
space. Here are the valid values for idtype and their corresponding ID types in
idlist:

Process Scheduler 5-9

Commands and Function Calis

idtype idlist
pid process IDs

ppid parent process IDs
pgid process group IDs

sid session IDs

class class names (TS or RT)
uid effective user IDs

gid effective group IDs
all

Here are some examples of the —d option of priocntl:

3. The —-s option sets scheduler parameters for a process or a set of processes.
The syntax for this option is

priocntl -s -c class class_options —i idtype idlist

idtype and idlist are the same as for the —d option described above.

class is TS for time-sharing or RT for real-time. You must be superuser to
create a real-time process, to raise a time-sharing user priority above a per-
process limit, or to raise the per-process limit above zero. Class options are
class-specific:

5-10 ‘ System Services and Application Packaging Tools

Commands and Function Calis

Class-specific options for priocntl
class -c class options meaning
real-time RT -p pri priority
-t sl time slice
-r res resolution
time-sharing TS -p upri user priority
-m uprilim user priority limit

For a real-time process you may assign a priority and a time slice.

m The priority is a number from 0 to the real-time maximum as reported by
priocntl -1; the default maximum is 59.

B You specify the time slice as a number of clock intervals and the resolu-
tion of the interval. Resolution is specified in intervals per second. The
time slice, therefore, is tslc/res seconds. To specify a time slice of one-
tenth of a second, for example, you could specify a tslc of 1 and a res of
10. If you specify a time slice without specifying a resolution, millisecond
resolution (a res of 1000) is assumed.

If you change a time-sharing process into a real-time process, it gets a default
priority and time slice if you don’t specify one. If you wish to change only the
priority of a real-time process and leave its time slice unchanged, omit the -t
option. If you wish to change only the time slice of a real-time process and
leave its priority unchanged, omit the —p option.

For a time-sharing process you may assign a user priority and a user priority
limit.
® The user priority is the user-controlled component of a time-sharing prior-
ity. The scheduler calculates the global priority of a time-sharing process
by combining this user priority with a system-controlled component that
depends on process behavior. The user priority has the same effect as a
value set by nice (except that nice uses higher numbers for lower prior-

ity).
@ The user priority limit is the maximum user priority a process may set for

itself without being superuser. By default, the user priority limit is 0; you
must be superuser to set a user priority limit above 0.

Process Scheduler 5-11

Commands and Function Calls

Both the user priority and the user priority limit must be within the user prior-
ity range reported by the priocntl -1 command. The default range is —20 to
+20.

A process may lower and raise its user priority as often as it wishes, as long as
the value is below its user priority limit. It is a courtesy to other users to lower
your user priority for big chunks of low-priority work. On the other hand, if
you lower your user priority limit, you must be superuser to raise it. A typical
use of the user priority limit is to reduce permanently the priority of child
processes or of some other set of low-priority processes.

The user priority can never be greater than the user priority limit. If you set the
user priority limit below the user priority, the user priority is lowered to the
new user priority limit. If you attempt to set the user priority above the user
priority limit, the user priority is set to the user priority limit.

Here are some examples of the —s option of priocntl:

4. The -e option sets scheduler parameters for a specified command and exe-
cutes the command. The syntax for this option is

priocntl -e —c class class_options command [command arguments]

The class and class options are the same as for the —s option described above.

5-12 System Services and Application Packaging Tools

Commands and Function Calls

The priocntl command subsumes the function of nice, which continues to
work as in previous releases. nice works only on time-sharing processes and
uses higher numbers to assign lower priorities. The final example above is
equivalent to using nice to set an “increment” of 10:

nice -10 make bigprog

The priocntl system call

#include
#include
#include
#include
#include

<sys/types.h>
<sys/procset.h>
<sys/priocntl.h>
<sys/rtpriocntl.h>
<sys/tspriocntl.h>

long priocntl(idtype_t idtype, id_t id, int cmd,
cmd_struct arg) ;

The priocntl system call gets or sets scheduler parameters of a set of
processes. The input arguments:

m idtype is the type of ID you are specifying.

m id is the ID.

® cmd specifies which priocntl function to perform. The functions are
listed in the table below.

B arg is a pointer to a structure that depends on cmd.

Process Scheduler

5-13

Commands and Function Calls

Here are the valid values for idtype, which are defined in priocntl.h, and
their corresponding ID types in id:

idtype Interpretation of id

P_PID process ID (of a single process)
P_PPID parent process ID

P_PGID process group ID

P_SID session ID

P_CID class ID

P_UID effective user ID

P_GID effective group ID

P_ALL all processes

Here are the valid values for cmd, their meanings, and the type of arg:

priocntl Commands
cmd arg Type Function
PC_GETCID pcinfo_t get class ID and attributes
PC_GETCLINFO pcinfo_t get class name and attributes
PC_SETPARMS pcparms_t set class and scheduling parameters
PC_GETPARMS pcparms_t get class and scheduling parameters

Here are the values priocntl returns on success:

m The GETCID and GETCLINFO commands return the number of configured
scheduler classes.

m PC_SETPARMS returns 0.
B PC_GETPARMS returns the process ID of the process whose scheduler pro-
perties it is returning.

On failure, priocntl returns -1 and sets errno to indicate the reason for the
failure. See priocnt1(2) for the complete list of error conditions.

5-14 System Services and Application Packaging Tools

Commands and Function Calls

PC_GETCID, PC_GETCLINFO

The PC_GETCID and PC_GETCLINFO commands retrieve scheduler parameters
for a class based on the class ID or class name. Both commands use the pcinfo
structure to send arguments and receive return values:

typedef struct pcinfo {

id_t pc_cid; /* class id */

char pc_clname[PC_CLNMSZ]; /* class name */

long pc_clinfo[PC_CLINFOSZ]; /* class information */
} pcinfo_t;

The PC_GETCID command gets scheduler class ID and parameters given the
class name. The class ID is used in some of the other priocntl commands to
specify a scheduler class. The valid class names are TS for time-sharing and RT
for real-time.

For the real-time class, pc_clinfo contains an rtinfo structure, which holds
rt_maxpri, the maximum valid real-time priority; in the default configuration,
this is the highest priority any process can have. The minimum valid real-time

priority is zero. rt_maxpri is a configurable value; the System Administrator’s

Guide tells how to configure process priorities.

typedef struct rtinfo {
short rt_maxpri; /* maximum real-time priority */
} rtinfo_t;

For the time-sharing class, pc_clinfo contains a tsinfo structure, which
holds ts_maxupri, the maximum time-sharing user priority. The minimum
time-sharing user priority is ~ts_maxupri. ts_maxupri is also a
configurable value.

typedef struct tsinfo {
short ts_maxupri; /* limits of user priority range */
} tsinfo_t;

The following program is a cheap substitute for priocntl -1; it gets and

prints the range of valid priorities for the time-sharing and real-time scheduler
classes.

Process Scheduler 5-15

Commands and Function Calls

5-16 System Services and Application Packaging Tools

Commands and Function Calls

The following screen shows the output of this program, called getcid in this
example.

The following function is useful in the examples below. Given a class name, it
uses PC_GETCID to return the class ID and maximum priority in the class.

All the following examples omit the lines that include header files. The
examples compile with the same header files as in the first example above.

Process Scheduler 517

Commands and Function ‘Calls

The PC_GETCLINFO command gets a scheduler class name and parameters
given the class ID. This command makes it easy to write applications that make
no assumptions about what classes are configured.

The following program uses PC_GETCLINFO to get the class name of a process
based on the process ID. This program assumes the existence of a function
getclassID, which retrieves the class ID of a process given the process ID; this
function is given in the following section.

5-18 System Services and Application Packaging Tools

Commands and Function Calls

PC_GETPARMS, PC_SETPARMS

The PC_GETPARMS command gets and the PC_SETPARMS command sets
scheduler parameters for processes. Both commands use the pcparms structure
to send arguments or receive return values:

typedef struct pcparms {
id t pc_cid; /* process class */
long pc_clparms[PC_CLPARMSZ]; /* class specific */
} pcparms_t;

Ignoring class-specific information for the moment, we can write a simple func-

tion for returning the scheduler class ID of a process, as promised in the previ-
ous section.

Process Scheduler 5-19

Commands and Function Calis

For the real-time class, pc_clparms contains an rtparms structure. rtparms
holds scheduler parameters specific to the real-time class:

typedef struct rtparms {
short rt_pri; /* real-time priority */
ulong rt_tgsecs; /* seconds in time quantum */
long rt_tqnsecs; /* additional nsecs in quantum */
} rtparms_t;

rt_pri is the real-time priority; rt_tgsecs is the number of seconds and
rt_tqnsecs is the number of additional nanoseconds in a time slice. That is,
rt_tgsecs seconds plus rt_tqnsecs nanoseconds is the interval a process
may use the CPU without sleeping before the scheduler gives another process a
chance at the CPU.

For the time-sharing class, pc_clparms contains a tsparms structure.
tsparms holds the scheduler parameter specific to the time-sharing class:

typedef struct tsparms {
short ts_uprilim; /* user priority limit */
short ts_upri; /* user priority */

} tsparms_t;

5-20 System Services and Application Packaging Tools

Commands and Function Calls

ts_upri is the user priority, the user-controlled component of a time-sharing
priority. ts_uprilim is the user priority limit, the maximum user priority a
process may set for itself without being superuser. These values are described
above in the discussion of the —s option of the priocntl command. Both the
user priority and the user priority limit must be within the range reported by
the priocntl -1 command; this range is also reported by the PC_GETCID and
PC_GETCLINFO commands to the priocntl system call.

The PC_GETPARMS command gets the scheduler class and parameters of a sin-
gle process. The return value of the priocntl is the process ID of the process
whose parameters are returned in the pcparms structure. The process chosen
depends on the idtype and id arguments to priocntl and on the value of
pcparms.pc_cid, which contains PC_CLNULL or a class ID returned by
PC_GETCID:

Figure 5-3: What Gets Returned by PC_GETPARMS

Number of Processes pc_cid
Selected by
idtype and id RT class ID TS class ID PC_CLNULL
RT parameters TS parameters class and
1 of process of process parameters of
selected selected process selected
RT parameters TS parameters
More than 1 of highest- of process with (error)
priority RT pro- highest user
cess priority

If idtype and id select a single process and pc_cid does not conflict with the
class of that process, priocnt1l returns the scheduler parameters of the process.
If they select more than one process of a single scheduler class, priocntl
returns parameters using class-specific criteria as shown in the table. priocntl
returns an error in the following cases:

m idtype and id select one or more processes and none is in the class
specified by pc_cid.

Process Scheduler 5-21

Commands and Function Calls

®m idtype and id select more than one process process and pc_cid is
PC_CLNULL.

m idtype and id select no processes.

The following program takes a process ID as its input and prints the scheduler
class and class-specific parameters of that process:

(continued on next page)

5-22 System Services and Application Packaging Tools

Commands and Function Calls

The PC_SETPARMS command sets the scheduler class and parameters of a set of
processes. The idtype and id input arguments specify the processes to be
changed. The pcparms structure contains the new parameters: pc_cid con-
tains the ID of the scheduler class to which the processes are to be assigned, as
returned by PC_GETCID; pc_clparms contains the class-specific parameters:

m If pc_cid is the real-time class ID, pc_clparms contains an rtparms
structure in which rt_pri contains the real-time priority and
rt_tgsecs plus rt_tqnsecs contains the time slice to be assigned to
the processes.

® If pc_cid is the time-sharing class ID, pc_clparms contains a t sparms
structure in which ts_uprilim contains the user priority limit and
ts_upri contains the user priority to be assigned to the processes.

Process Scheduler 5-23

Commands and Function Calis

The following program takes a process ID as input, makes the process a real-
time process with the highest valid priority minus 1, and gives it the default

time slice for that priority. The program calls the schedinfo function listed
above to get the real-time class ID and maximum priority.

5-24 System Services and Application Packaging Tools

Commands and Function Calls

The following table lists the special values rt_tqnsecs can take when
PC_SETPARMS is used on real-time processes. When any of these is used,
rt_tgsecs is ignored. These values are defined in the header file
rtpriocntl.h:

rt_tqnsecs Time Slice
RT_TQINF infinite
RT_TQDEF default
RT_NOCHANGE unchanged

RT_TQINF specifies an infinite time slice. RT_TQDEF specifies the default time
slice configured for the real-time priority being set with the SETPARMS call.
RT_NOCHANGE specifies no change from the current time slice; this value is use-
ful, for example, when you change process priority but do not wish to change
the time slice. (You can also use RT_NOCHANGE in the rt_pri field to change a
time slice without changing the priority.)

The priocntiset system call

#include <sys/types.h>
#include <sys/signal.h>
#include <sys/procset.h>
#include <sys/priocntl.h>
#include <sys/rtpriocntl.h>
#include <sys/tspriocntl.h>

long priocntlset (procset_t *psp, int cmd,
cmd_struct arg);

The priocntlset system call changes scheduler parameters of a set of
processes, just like priocntl. priocntlset has the same command set as
priocntl; the cmd and arg input arguments are the same. But while
priocntl applies to a set of processes specified by a single idtype/id pair,
priocntlset applies to a set of processes that results from a logical combina-
tion of two idtype/id pairs. The input argument psp points to a procset
structure that specifies the two idtype/id pairs and the logical operation to

Process Scheduler 5-25

Commands and Function Calls

perform. This structure is defined in procset . h:

typedef struct procset {
idop_t p_op; /* operator connecting */
/* left and right sets */
/* left set: */

idtype_t p_lidtype; /* left ID type */
id_t p_lid; /* left ID */

/* right set: */
idtype_t p_ridtype; /* right ID type */
id_t p_rid; /* right ID */

} procset_t;

p_lidtype and p_1id specify the ID type and ID of one (“left”) set of
processes; p_ridtype and p_rid specify the ID type and ID of a second
(“right”) set of processes. p_op specifies the operation to perform on the two
sets of processes to get the set of processes to operate on. The valid values for
p_op and the processes they specify are:

®m POP_DIFF: set difference—processes in left set and not in right set

m POP_AND: set intersection—processes in both left and right sets

m POP_OR: set union—processes in either left or right sets or both

®m POP_XOR: set exclusive-or—processes in left or right set but not in both
The following macro, also defined in procset .h, offers a convenient way to
initialize a procset structure :

#define setprocset (psp, op, ltype, 1lid, rtype, rid) \

(psp) —>p_op = (op); \
(psp)->p_lidtype = (ltype): \
(psp) —>p_lid = (1id); \
(psp) —>p_ridtype = (rtype); \
(psp) ->p_rid = (rid);

Here is a situation where priocntlset would be useful: suppose an applica-
tion had both real-time and time-sharing processes that ran under a single user
ID. If the application wanted to change the priority of only its real-time
processes without changing the time-sharing processes to real-time processes, it
could do so as follows. (This example uses the function schedinfo, which is
defined above in the section on PC_GETCID.)

5-26 System Services and Application Packaging Tools

Commands and Function Calls

priocntl offers a simple scheduler interface that is adequate for many applica-
tions; applications that need a more powerful way to specify sets of processes
can use priocntlset.

Process Scheduler 5-27

Interaction with Other Functions

Kernel Processes

The kernel assigns its demon and housekeeping processes to the system
scheduler class. Users may neither add processes to nor remove processes from
this class, nor may they change the priorities of these processes. The command
ps —cel lists the scheduler class of all processes. Processes in the system class
are identified by a SYS entry in the CLS column.

If the workload on a machine contains real-time processes that use too much
CPU, they can lock out system processes, which can lead to all sorts of trouble.
Real-time applications must ensure that they leave some CPU time for system
and other processes.

fork, exec

Scheduler class, priority, and other scheduler parameters are inherited across the
fork(2) and exec(2) system calls.

nice

The nice(1) command and the nice(2) system call work as in previous ver-
sions of the UNIX system. They allow you to change the priority of only a
time-sharing process. You still use use lower numeric values to assign higher
time-sharing priorities with these functions.

To change the scheduler class of a process or to specify a real-time priority, you
must use one of the priocntl functions. You use higher numeric values to
assign higher priorities with the priocntl functions.

5-28 System Services and Application Packaging Tools

Interaction with Other Functions

init
The init process is treated as a special case by the scheduler. To change the

scheduler properties of init, init must be the only process specified by
idtype and id or by the procset structure.

Process Scheduler 5-29

Performance

Because the scheduler determines when and for how long processes run, it has
an overriding importance in the performance and perceived performance of a
system.

By default, all processes are time-sharing processes. A process changes class
only as a result of one of the priocntl functions.

In the default configuration, all real-time process priorities are above any time-
sharing process pri<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>